如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E是AB的中點(diǎn).
(Ⅰ)求證:B1C⊥平面AED1;
(Ⅱ)求二面角A-D1E-C的大小.
考點(diǎn):二面角的平面角及求法,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)首先建立空間直角坐標(biāo)系,求出相應(yīng)的點(diǎn)的坐標(biāo),利用向量的數(shù)量積,求出平面的法向量,進(jìn)一步利用向量共線求出結(jié)果.
(Ⅱ)先求出平面的法向量,利用法向量的夾角求出結(jié)果.
解答: 證明:( I)如圖,因?yàn)锳BCD-A1B1C1D1為長(zhǎng)方形,以D為坐標(biāo)原點(diǎn),DA為x軸的正半軸,DC為y軸的正半軸,建立空間直角坐標(biāo)系,
由題知,A(1,0,0),E(1,1,0),D1(0,0,1),C(0,2,0),B1(1,2,1);所以
B1C
=(-1,0,-1)

設(shè)平面AED1的一個(gè)法向量為
n
=(x,y,z)
,
AE
=(0,1,0)
AD1
=(-1,0,1)
;
n
AE
=0
n
AD1
=0
,則
0×x+1×y+0×z=0
-1×x+0×y+1×z=0
,令x=1,求得
n
=(1,0,1)
;
n
=-
B1C

所以,B1C⊥平面AED1成立.
解:( II) 設(shè)二面角A-D1E-C的平面角為θ∈[0,π],
由( I) 平面AED1的一個(gè)法向量為
n
=(1,0,1)
;
同理:設(shè)
n2
=(x,y,z)

由于E(1,1,0),C(0,2,0),D1(0,0,1)
EC
=(-1,1,0)
D1C
=(0,2,-1)

n2
EC
=0
n2
D1C
=0

可求平面D1EC的一個(gè)法向量為:
n2
=(-1,-1,-2)

cosθ=
n
n1
|
n
||
n1
|
=-
3
2

所以
所以,所求二面角A-D1E-C的平面角為:θ=
6

點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):線面垂直的判定定理,法向量的應(yīng)用,二面角的應(yīng)用,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:函數(shù) f(x)=lg(ax2-4x+a)的定義域?yàn)镽;命題q:不等式a<x+
1
x
-1對(duì)?x∈(0,+∞)恒成立.如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-2-1,x≥0
x+2,x<0
g(x)=
x2-2x,x≥0
1
x
,x<0.
,則函數(shù)f[g(x)]的所有零點(diǎn)之和是( 。
A、-
1
2
+
3
B、
1
2
+
3
C、-1+
3
2
D、1+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={z1||z1+1|≤1,z1∈C},B={z2|z2=z1+i+m,z1∈A,m∈R}.
(1)當(dāng)A∩B=∅時(shí),求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使A∩B=A?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC是正三角形,線段EA和DC都垂直與平面ABC,設(shè)EA=AB=2α,DC=a,且F為BE的中點(diǎn),如圖:
(1)求證:DF∥平面ABC;
(2)求證:AF⊥BD;
(3)求平面BDF與平面ABC所成的二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中sn是它的前n項(xiàng)和,設(shè)a4=-2,s5=-20
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
1
(an+10)(an+12)
,求數(shù)列{bn}的前n項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線y=xlnx在點(diǎn)P處的切線過點(diǎn)(0,-1),則點(diǎn)P的坐標(biāo)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):cos8x-sin8x+
1
4
sin2xsin4x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0|φ|<
π
2
)在一個(gè)周期內(nèi)的圖象,M、N分別是最大、最小值點(diǎn),且
OM
ON
,則ω=
 
,A=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案