【題目】已知橢圓 的離心率為 ,其左頂點(diǎn)A在圓O:x2+y2=16上. (Ⅰ)求橢圓W的方程;
(Ⅱ)若點(diǎn)P為橢圓W上不同于點(diǎn)A的點(diǎn),直線AP與圓O的另一個(gè)交點(diǎn)為Q.是否存在點(diǎn)P,使得 ?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
【答案】解:(Ⅰ)因?yàn)闄E圓W的左頂點(diǎn)A在圓O:x2+y2=16上, 令y=0,得x=±4,所以a=4.
又離心率為 ,所以 ,所以 ,
所以b2=a2﹣c2=4,
所以W的方程為 .
(Ⅱ)法一:設(shè)點(diǎn)P(x1 , y1),Q(x2 , y2),設(shè)直線AP的方程為y=k(x+4),
與橢圓方程聯(lián)立得 ,
化簡(jiǎn)得到(1+4k2)x2+32k2x+64k2﹣16=0,
因?yàn)椹?為上面方程的一個(gè)根,所以 ,所以
所以 .
因?yàn)閳A心到直線AP的距離為 ,
所以 ,
因?yàn)? ,
代入得到
顯然 ,所以不存在直線AP,使得 .
法二:
設(shè)點(diǎn)P(x1 , y1),Q(x2 , y2),設(shè)直線AP的方程為x=my﹣4,
與橢圓方程聯(lián)立得
化簡(jiǎn)得到(m2+4)y2﹣8my=0,由△=64m2>0得m≠0.
顯然0是上面方程的一個(gè)根,所以另一個(gè)根,即 .
由 ,
因?yàn)閳A心到直線AP的距離為 ,
所以 .
因?yàn)? ,
代入得到 ,
若 ,則m=0,與m≠0矛盾,矛盾,
所以不存在直線AP,使得 .
法三:假設(shè)存在點(diǎn)P,使得 ,則 ,得 .
顯然直線AP的斜率不為零,設(shè)直線AP的方程為x=my﹣4
由 ,得(m2+4)y2﹣8my=0,
由△=64m2>0得m≠0,
所以 .
同理可得 ,
所以由 得 ,
則m=0,與m≠0矛盾,
所以不存在直線AP,使得
【解析】(Ⅰ)由題意求出a,通過離心率求出c,然后求解橢圓的標(biāo)準(zhǔn)方程.(Ⅱ)法一:設(shè)點(diǎn)P(x1 , y1),Q(x2 , y2),設(shè)直線AP的方程為y=k(x+4),與橢圓方程聯(lián)立,利用弦長(zhǎng)公式求出|AP|,利用垂徑定理求出|oa|,即可得到結(jié)果.法二:設(shè)點(diǎn)P(x1 , y1),Q(x2 , y2),設(shè)直線AP的方程為x=my﹣4,與橢圓方程聯(lián)立與橢圓方程聯(lián)立得求出|AP|,利用垂徑定理求出|oa|,即可得到結(jié)果.法三:假設(shè)存在點(diǎn)P,推出 ,設(shè)直線AP的方程為x=my﹣4,聯(lián)立直線與橢圓的方程,利用韋達(dá)定理,推出 ,求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)可以得到問題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí), f(x)=-x+1
(1)求f(0),f(2);
(2)求函數(shù)f(x)的解析式;
(3)若f(a-1)<3,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長(zhǎng)、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點(diǎn)在曲線2x2+y2=1上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點(diǎn),焦距為,動(dòng)弦平行于軸,且.
(1)求橢圓的方程;
(2)過分別作直線交橢圓于和,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并給出證明;
(3)若x∈時(shí),函數(shù)f(x)的值域是[0,1],求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)作圓的切線,切點(diǎn)分別為,直線與軸交于點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 其中是常數(shù)且,若的最小值是,滿足條件的點(diǎn)是橢圓一弦的中點(diǎn),則此弦所在的直線方程為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,則函數(shù)g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點(diǎn)個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com