精英家教網 > 高中數學 > 題目詳情
有四個關于三角函數的命題:
(1)?x∈R,sin2
x
2
+cos2
x
2
=
1
2
;
(2)?x、y∈R,sin(x-y)=sinx-siny;
(3)?x∈[0,π],
1-cos2x
2
=sinx;
(4)sinx=cosy?x+y=
π
2

其中假命題的序號是
 
分析:由同角三角函數的關系知(1)是假命題;由三解函數的關系知(4)不成立.
解答:解:sin2
x
2
+cos2
x
2
=1,故(1)是假命題;
當x=y=0時,sin(x-y)=sinx-siny,故(2)成立;
?x∈[0,π],
1-cos2x
2
=sinx,(3)成立;
  sinx=cosy?x+y=
π
2
不成立,故(4)不成立.
故答案:(1)、(4).
點評:本題考查復合命題的真假,解題時要認真審題,仔細解答,注意公式的正確選用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

有四個關于三角函數的命題:
P1:?x∈R,sin2
x
2
+cos2
x
2
=
1
2
;
P2:?x、y∈R,sin(x-y)=sinx-siny;
P3:?x∈[0,π],
1-cos2x
2
=sinx;
P4:sinx=cosy?x+y=
π
2

其中假命題的是( 。
A、P1,P4
B、P2,P4
C、P1,P3
D、P2,P4

查看答案和解析>>

科目:高中數學 來源: 題型:

有四個關于三角函數的命題:
P1:?x∈R,sinx+cosx=2;                        P2:?x∈R,sin2x=sinx;
P3:?x∈[-
π
2
π
2
],
1+cos2x
2
=cosx
;    P4:?x∈(0,π)sinx>cosx.
其中真命題是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

有四個關于三角函數的命題:
(1)P1:?x∈R,sin2
x
2
+cos2
x
2
=
1
2
;    
(2)P2:?x、y∈R,sin(x-y)=sinx-siny;
(3)P3:?x∈[0,π],
1-cos2x
2
=sinx;    
(4)P4:sinx=cosy⇒x+y=
π
2
,其中真命題的是
(2)(3)
(2)(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

有四個關于三角函數的命題:p1:存在x∈R,使得sin2
x
2
+cos2
x
2
=
1
2
;p2:若一個三角形兩內角α、β滿足sinα•cosβ<0,則此三角形為鈍角三角形;p3:任意的x∈[0,π],都有sinx=
1-cos2x
2
;p4:要得到函數y=sin(
x
2
-
π
4
)
的圖象,只需將函數y=sin
x
2
的圖象向右平移
π
4
個單位.其中假命題的是( 。

查看答案和解析>>

同步練習冊答案