(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)
設(shè)數(shù)列中,若,則稱數(shù)列為“凸數(shù)列”。
(1)設(shè)數(shù)列為“凸數(shù)列”,若,試寫出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”中,求證:;
(3)設(shè),若數(shù)列為“凸數(shù)列”,求數(shù)列前2010項(xiàng)和。
(1);(2)略;(3)0
(1),,
。           …………………………………………………………4分
(2)由條件得,……………………………………………7分
。      …………………………………………………………10分
(3)由(2)的結(jié)論,,即!12分

。         …………………………………………………………14分
由(2)得
。 …………………………………………………………16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
若數(shù)列滿足,為數(shù)列的前項(xiàng)和.
(Ⅰ) 當(dāng)時(shí),求的值;
(Ⅱ)是否存在實(shí)數(shù),使得數(shù)列為等比數(shù)列?若存在,求出滿足的條件;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知點(diǎn)(1,)是函數(shù))的圖象上一點(diǎn),等比數(shù)列的前n項(xiàng)和為,數(shù)列的首項(xiàng)為c,且前n項(xiàng)和滿足
=+(n2).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列{前n項(xiàng)和為,問>的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設(shè)是數(shù)列的前項(xiàng)和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項(xiàng)公式,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)已知數(shù)列是公差為的等差數(shù)列,數(shù)列是公比為的(q∈R)的等比數(shù)列,若函數(shù),且,,,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,對一切,都有成立,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列滿足: ,且數(shù)列的前
n項(xiàng)和為.
(1) 求的值;
(2) 求證:數(shù)列是等比數(shù)列;
(3) 抽去數(shù)列中的第1項(xiàng),第4項(xiàng),第7項(xiàng),……,第3n-2項(xiàng),……余下的項(xiàng)順序不變,組成一個(gè)新數(shù)列,若的前n項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列中,,,其前項(xiàng)和,則( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的第項(xiàng)為,第項(xiàng)為,問:(1)從第幾項(xiàng)開始為負(fù)?(2)從第幾項(xiàng)開始為負(fù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列中,已知,若對任意正整數(shù),有,且,則該數(shù)列的前2010項(xiàng)和
(   )
A..B..C..D..

查看答案和解析>>

同步練習(xí)冊答案