(本題13分) 設(shè)橢圓的對稱中心為坐標原點,其中一個頂點為,右焦點與點的距離為.
(1)求橢圓的方程;
(2)是否存在經(jīng)過點的直線,使直線與橢圓相交于不同的兩點滿足?若存在,求出直線的方程;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省元月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分) 設(shè)橢圓E中心在原點,焦點在x軸上,短軸長為4,點M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動直線L交橢圓E于A、B兩點,且,求△OAB的面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年福建省高三模擬考試數(shù)學(xué)(理科)試題 題型:解答題
(本小題滿分13分)
設(shè)橢圓的離心率,右焦點到直線的距離為坐標原點.
(I)求橢圓的方程;
(II)過點作兩條互相垂直的射線,與橢圓分別交于兩點,證明點到直
線的距離為定值,并求弦長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題13分) 設(shè)橢圓的對稱中心為坐標原點,其中一個頂點為,右焦點與點的距離為.
(1)求橢圓的方程;
(2)是否存在經(jīng)過點的直線,使直線與橢圓相交于不同的兩點滿足?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:重慶市西南師大附中09-10學(xué)年高二上學(xué)期期中考試 題型:解答題
(13分) 設(shè)橢圓的中心在原點,坐標軸為對稱軸,焦點在x軸上,一個焦點與短軸兩端點的連線互相垂直,且此焦點與長軸上較近的端點距離為,
(1) 求此橢圓方程,并求出準線方程;
(2) 若P在左準線l上運動,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com