已知圓,設(shè)點(diǎn)是直線上的兩點(diǎn),它們的橫坐標(biāo)分別是,點(diǎn)在線段上,過(guò)點(diǎn)作圓的切線,切點(diǎn)為
(1)若,求直線的方程;
(2)經(jīng)過(guò)三點(diǎn)的圓的圓心是,求線段(為坐標(biāo)原點(diǎn))長(zhǎng)的最小值

(1);(2).

解析試題分析:(1)因?yàn)辄c(diǎn)在線段上,所以可假設(shè)點(diǎn)的坐標(biāo),又根據(jù),所以可求出點(diǎn)的坐標(biāo),同時(shí)要檢驗(yàn)一下使得點(diǎn)符合在線段上,再通過(guò)假設(shè)直線的斜率,利用點(diǎn)到直線的距離等于圓的半徑即可求出直線的斜率,從而得到切線方程;(2)因?yàn)榻?jīng)過(guò)三點(diǎn)的圓的圓心是,求線段 (為坐標(biāo)原點(diǎn))長(zhǎng),通過(guò)假設(shè)點(diǎn)的坐標(biāo)即可表示線段的中點(diǎn)的坐標(biāo)(因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e7/8/dcjdx2.png" style="vertical-align:middle;" />), 根據(jù)兩點(diǎn)間的距離公式寫(xiě)出的表達(dá)式,接著關(guān)鍵是根據(jù)的范圍討論,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/8/mybxa4.png" style="vertical-align:middle;" />的值受的大小決定的,要分三種情況討論即i) ;ii) ;iii) ;分別求出三種情況的最小值即為所求的結(jié)論.
試題解析:(1)設(shè)

解得(舍去)

由題意知切線的斜率存在,設(shè)斜率為
所以直線的方程為,即
直線與圓相切,,解得
直線的方程是                  6分
(2)設(shè)
與圓相切于點(diǎn)

經(jīng)過(guò)三點(diǎn)的圓的圓心是線段的中點(diǎn)

的坐標(biāo)是
設(shè)
當(dāng),即時(shí),
當(dāng),即時(shí),
當(dāng),即時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)訄A
(1)當(dāng)時(shí),求經(jīng)過(guò)原點(diǎn)且與圓相切的直線的方程;
(2)若圓與圓內(nèi)切,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓滿足:
①截y軸所得弦長(zhǎng)為2;
②被x軸分成兩段圓弧,其弧長(zhǎng)的比為.
求在滿足條件①②的所有圓中,使代數(shù)式取得最小值時(shí),圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C的圓心與點(diǎn)P(-2,1)關(guān)于直線y=x+1對(duì)稱,直線3x+4y-11=0與圓C相交于A、B兩點(diǎn),且=6,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知直線lyx,圓C1的圓心為(3,0),且經(jīng)過(guò)點(diǎn)A(4,1).
 
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對(duì)稱,點(diǎn)B、D分別為圓C1C2上任意一點(diǎn),求|BD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的方程為:,直線的方程為,點(diǎn)在直線上,過(guò)點(diǎn)作圓的切線,切點(diǎn)為

(1)若,求點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程;
(3)求證:經(jīng)過(guò)(其中點(diǎn)為圓的圓心)三點(diǎn)的圓必經(jīng)過(guò)定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)點(diǎn)Q(-2,)作圓O:x2+y2=r2(r>0)的切線,切點(diǎn)為D,且|QD|=4.
(1)求r的值.
(2)設(shè)P是圓O上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)P作圓O的切線l,且l交x軸于點(diǎn)A,交y軸于點(diǎn)B,設(shè)=+,求||的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線lyxm,m∈R.
(1)若以點(diǎn)M(2,0)為圓心的圓與直線l相切于點(diǎn)P,且點(diǎn)Py軸上,求該圓的方程;
(2)若直線l關(guān)于x軸對(duì)稱的直線為l′,問(wèn)直線l′與拋物線Cx2=4y是否相切?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的三個(gè)頂點(diǎn),,,其外接圓為
(1)若直線過(guò)點(diǎn),且被截得的弦長(zhǎng)為2,求直線的方程;
(2)對(duì)于線段上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),求的半徑的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案