((本小題共14分)
已知橢圓.過(guò)點(diǎn)(m,0)作圓的切線l交橢圓G于A,B兩點(diǎn).
(I)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(II)將表示為m的函數(shù),并求的最大值.
(Ⅰ)由已知得 所以所以橢圓的焦點(diǎn)坐標(biāo)為 ,離心率為
(Ⅱ)(Ⅱ)由題意知,.當(dāng)時(shí),切線l的方程,點(diǎn)A、B的坐標(biāo)分別為此時(shí)當(dāng)m=-1時(shí),同理可得
當(dāng)時(shí),設(shè)切線l的方程為由
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,則又由l與圓所以
由于當(dāng)時(shí),
所以.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6e/e/d6at11.gif" style="vertical-align:middle;" />
且當(dāng)時(shí),|AB|=2,所以|AB|的最大值為2
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
數(shù)列的前n項(xiàng)和為,點(diǎn)在直線
上.
(I)求證:數(shù)列是等差數(shù)列;
(II)若數(shù)列滿足,求數(shù)列的前n項(xiàng)和
(III)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EFPB交PB于點(diǎn)F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題
(本小題共14分)
正方體的棱長(zhǎng)為,是與的交點(diǎn),為的中點(diǎn).
(Ⅰ)求證:直線∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com