A. | (-1,0) | B. | [-1,0] | C. | (-1,-$\frac{1}{3}$) | D. | [-1,-$\frac{1}{3}$] |
分析 直線y=mx+1恒過C(0,1)點(diǎn),曲線x=2+$\sqrt{1-{y}^{2}}$ 知x≥2,且可轉(zhuǎn)化為:(x-2)2+y2=1 (x≥2),利用數(shù)形結(jié)合即可求解.
解答 解:由題意知:直線y=mx+1恒過C(0,1)點(diǎn);
曲線x=2+$\sqrt{1-{y}^{2}}$ 知x≥2,且可轉(zhuǎn)化為:(x-2)2+y2=1 (x≥2),
即以(2,0)為圓心,半徑R=1的半圓;
由圖知:A(2,1),B(2,-1);
kBC=$\frac{1-(-1)}{0-2}$=-1;kAC=0;
故m的取值范圍為[-1,0]
故選:B
點(diǎn)評 本題主要考查了直線與圓的位置關(guān)系與交點(diǎn),利用數(shù)形結(jié)合與斜率知識點(diǎn),屬中等題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $3\sqrt{2}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$) | B. | ($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$] | C. | ($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1] | D. | ($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{4}$ | B. | $\frac{10+\sqrt{10}}{5}$ | C. | $\frac{10-\sqrt{10}}{5}$ | D. | $\frac{10+2\sqrt{10}}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com