【題目】計算下列定積分:
(1) dx
(2) dx
(3)求如圖所示陰影部分的面積.
【答案】
(1)解: dx=(ex+lnx)| =(e2+ln2)﹣(e﹣ln1)=e2+ln2﹣e
(2)解: dx=(x3+x2+x)| =(1+1+1)﹣(﹣1+1﹣1)=4
(3)解:由 ,解得 或 ,
則如圖所示陰影部分的面積S= [(﹣x+1)﹣(x2﹣1)]dx=(﹣ ﹣ x2+2x)| =(﹣ +2)﹣( ﹣2﹣4)=
【解析】分別根據(jù)定積分的計算公式計算即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解定積分的概念的相關(guān)知識,掌握定積分的值是一個常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—5:不等式選講]
已知函數(shù)f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)當(dāng)a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各棱長都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,tanA是以﹣4為第三項(xiàng),4為第七項(xiàng)的等差數(shù)列的公差,tanB是以 為第三項(xiàng),9為第六項(xiàng)的等比數(shù)列公比,則這個三角形是( )
A.鈍角三角形
B.銳角三角形
C.等腰直角三角形
D.以上都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2 , 在x=1處有極大值3,則f(x)的極小值為( )
A.0
B.1
C.2
D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 對一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,記an與an+1的等差中項(xiàng)為kn .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)集合 ,等差數(shù)列{cn}的任意一項(xiàng)cn∈A∩B,其中c1是A∩B中的最小數(shù),且110<c10<115,求{cn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x2﹣2x﹣4lnx,則f(x)的單調(diào)遞增區(qū)間為( )
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為( )
A. 米
B.2 米
C.3 米
D.4 米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x2-12|的定義域?yàn)閇0,m],值域?yàn)閇0,am2],則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com