【題目】2014年7月16日,中國(guó)互聯(lián)網(wǎng)絡(luò)信息中心發(fā)布《第三十四次中國(guó)互聯(lián)網(wǎng)發(fā)展?fàn)顩r報(bào)告》,報(bào)告顯示:我國(guó)網(wǎng)絡(luò)購(gòu)物用戶已達(dá)億.為了了解網(wǎng)購(gòu)者一次性購(gòu)物金額情況,某統(tǒng)計(jì)部門(mén)隨機(jī)抽查了6月1日這一天100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表.已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為.
(Ⅰ)確定, , , 的值;
(Ⅱ)為進(jìn)一步了解網(wǎng)購(gòu)金額的多少是否與網(wǎng)齡有關(guān),對(duì)這100名網(wǎng)購(gòu)者調(diào)查顯示:購(gòu)物金額在2000元以上的網(wǎng)購(gòu)者中網(wǎng)齡3年以上的有35人,購(gòu)物金額在2000元以下(含2000元)的網(wǎng)購(gòu)者中網(wǎng)齡不足3年的有20人.
①請(qǐng)將列聯(lián)表補(bǔ)充完整;
網(wǎng)齡3年以上 | 網(wǎng)齡不足3年 | 合計(jì) | |
購(gòu)物金額在2000元以上 | 35 | ||
購(gòu)物金額在2000元以下 | 20 | ||
合計(jì) | 100 |
②并據(jù)此列聯(lián)表判斷,是否有%的把握認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在三年以上有關(guān)?
參考數(shù)據(jù):
(參考公式: ,其中)
【答案】(Ⅰ), , ;(Ⅱ)見(jiàn)解析.
【解析】試題分析:(Ⅰ)由網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為,得,進(jìn)而根據(jù)表格的每一列總數(shù)可求解;
(Ⅱ)①根據(jù)題中提供數(shù)據(jù)一次填入表格即可;
②由數(shù)據(jù)可得列聯(lián)表,利用公式,可得結(jié)論.
試題解析:
(Ⅰ)因?yàn)榫W(wǎng)購(gòu)金額在2000元以上的頻率為,
所以網(wǎng)購(gòu)金額在2000元以上的人數(shù)為100=40
所以,所以, ,
所以.
(Ⅱ)由題設(shè)列聯(lián)表如下
網(wǎng)齡3年以上 | 網(wǎng)齡不足3年 | 合計(jì) | |
購(gòu)物金額在2000元以上 | 35 | 5 | 40 |
購(gòu)物金額在2000元以下 | 40 | 20 | 60 |
合計(jì) | 75 | 25 | 100 |
所以=.
因?yàn)?/span>
所以據(jù)此列聯(lián)表判斷,有%的把握認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在三年以上有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:函數(shù) 在(﹣∞,+∞)上有極值,命題q:雙曲線 的離心率e∈(1,2).若p∨q是真命題,p∧q是假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=﹣ x3+ x2+2ax.
(1)當(dāng)a=1時(shí),求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在( ,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形的頂點(diǎn)分別為A(﹣1,3),B(3,2),C(1,0)
(1)求BC邊上高的長(zhǎng)度;
(2)若直線l過(guò)點(diǎn)C,且在l上不存在到A,B兩點(diǎn)的距離相等的點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.
(1)求拋物線的方程;
(2)已知點(diǎn),延長(zhǎng)交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機(jī)調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對(duì)餐廳服務(wù)質(zhì)量進(jìn)行評(píng)分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評(píng)分在[40,60)的師生中,隨機(jī)抽取2人,求此人中恰好有1人評(píng)分在[40,50)上的概率;
(3)學(xué)校規(guī)定:師生對(duì)食堂服務(wù)質(zhì)量的評(píng)分不得低于75分,否則將進(jìn)行內(nèi)部整頓,試用組中數(shù)據(jù)估計(jì)該校師生對(duì)食堂服務(wù)質(zhì)量評(píng)分的平均分,并據(jù)此回答食堂是否需要進(jìn)行內(nèi)部整頓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線與橢圓交于, 兩點(diǎn),直線, 分別與軸交于點(diǎn), .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn),當(dāng)時(shí), 恰為橢圓的上頂點(diǎn),此時(shí)的面積為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為,直線與直線分別相交于點(diǎn),問(wèn)當(dāng)變化時(shí),以線段為直徑的圓被軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)求證:當(dāng)a>2時(shí), + <2 ; (Ⅱ)證明:2, ,5不可能是同一個(gè)等差數(shù)列中的三項(xiàng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com