【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,長軸長為4.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)如圖,過坐標原點O作兩條互相垂直的射線,與橢圓C交于A,B兩點.設A(x1 , y1),B(x2 , y2),直線AB的方程為y=﹣2x+m(m>0),試求m的值.
【答案】解:(Ⅰ)∵橢圓C: =1(a>b>0)的焦距為2 ,長軸長為4,
∴c= ,a=2,
∴b=1,
∴橢圓C的標準方程為 =1;
(Ⅱ)直線AB的方程為y=﹣2x+m(m>0),代入橢圓方程得
17x2﹣16mx+4m2﹣4=0,
則x1+x2= ,x1x2= ,①
由OA⊥OB,
知x1x2+y1y2=x1x2+(﹣2x1+m)(﹣2x2+m)
=5x1x2﹣2m(x1+x2)+m2=0,
將①代入,得5× ﹣2m× +m2=0,
∵m>0,
∴m=2.
【解析】(Ⅰ)利用橢圓C: =1(a>b>0)的焦距為2 ,長軸長為4,求出橢圓的幾何量,可得橢圓C的標準方程;(Ⅱ)直線AB、聯(lián)立橢圓方程,消去y,運用韋達定理,由OA⊥OB,則有x1x2+y1y2=0,化簡整理即可求m的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)當直線l與圓C相交于A、B兩點,且AB=2 時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機調査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.
(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計所有使用者的平均年齡;
(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再從這6人中選出2人,求這2人在不同的年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二面角α﹣AB﹣β是直二面角,P為棱AB上一點,PQ、PR分別在平面α、β內,且∠QPB=∠RPB=45°,則∠QPR為( )
A.45°
B.60°
C.120°
D.150°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設A1、A2為橢圓 的左右頂點,若在橢圓上存在異于A1、A2的點P,使得 ,其中O為坐標原點,則橢圓的離心率e的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產(chǎn)業(yè)轉型升級,某品牌飲料公司對微商銷售情況進行中期調研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?
(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調查活動,求恰有1家是優(yōu)秀微商的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S一ABCD中,已知AD∥BC,∠ADC=90°,∠BAD=135°,AD=DC= ,SA=SC=SD=2.
(I)求證:AC⊥SD;
(Ⅱ)求二面角A﹣SB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是遞增的等差數(shù)列a3= ,且a2a4=6.
(1)求{an}的首項a1和公差d;
(2)求{an}的通項和前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com