【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π),其圖象最低點(diǎn)的縱坐標(biāo)是-,相鄰的兩個(gè)對(duì)稱中心是(,0)和(,0).:

(1)f(x)的解析式;

(2)f(x)的值域;

(3)f(x)圖象的對(duì)稱軸.

【答案】1;(2;(3

【解析】

1)由題得,再根據(jù)函數(shù)的周期求出的值,再根據(jù)函數(shù)的圖象過(guò)點(diǎn)求出的值,即得解;(2)利用余弦函數(shù)的圖象和性質(zhì)求出函數(shù)的值域;(3)令即得函數(shù)圖象的對(duì)稱軸方程.

1)因?yàn)楹瘮?shù)f(x)=Acos(ωx+φ)(A>0),其圖象最低點(diǎn)的縱坐標(biāo)是,

所以.

由題得.

因?yàn)楹瘮?shù)的圖象過(guò)點(diǎn)

因?yàn)?/span>0<φ<π,所以.

所以.

2)因?yàn)?/span>,所以函數(shù)的值域?yàn)?/span>.

3)令.

所以函數(shù)的圖象的對(duì)稱軸為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 ,滿足, , , 內(nèi)一點(diǎn)(包括邊界),,則以下結(jié)論一定成立的是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的個(gè)數(shù)是(

①如果、是兩條直線,,那么平行于過(guò)的任何一個(gè)平面;②如果直線滿足,那么與平面內(nèi)的任何一條直線平行;③如果直線、滿足,則;④如果直線、和平面滿足,,那么;⑤如果與平面內(nèi)的無(wú)數(shù)條直線平行,那么直線必平行于平面.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:

(1)根據(jù)表格提供的數(shù)據(jù)求出函數(shù)的一個(gè)解析式;

(2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域是的一切實(shí)數(shù),對(duì)定義域內(nèi)的任意,都有且當(dāng)時(shí),.

(1)求證:是偶函數(shù);

(2)求證:上是增函數(shù);

(3)試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)若集合A={x|x2+5x﹣6=0},B={x|x2+2(m+1)x+m2﹣3=0}.

(1)若m=0,寫(xiě)出A∪B的子集;

(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)時(shí)函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為

(1)求出此函數(shù)的解析式;

(2)是否存在實(shí)數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請(qǐng)說(shuō)明理由;

(3)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉?lái)的得到函數(shù),再將函數(shù)的圖像向左平移個(gè)單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí),某地上班族中的成員僅以自駕或公交方式通勤,分析顯示:當(dāng)的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:

1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

2)求該地上班族的人均通勤時(shí)間的表達(dá)式;并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種計(jì)算機(jī)病毒是通過(guò)電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測(cè)到的數(shù)據(jù):

1

2

3

4

5

被感染的計(jì)算機(jī)數(shù)量(臺(tái))

10

20

39

81

160

則下列函數(shù)模型中,能較好地反映計(jì)算機(jī)在第天被感染的數(shù)量之間的關(guān)系的是

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案