已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

(1)若sinβ=
3
5
,β是鈍角,求tanα的值;
(2)求證:tan(α+β)=3tanβ.
分析:(1)根據(jù)a∥b,即a和b的坐標(biāo),進(jìn)而可知sin(α+2β)=2sinα,根據(jù)sinβ求得cosβ,進(jìn)而可求得sin2β,進(jìn)而利用兩角和公式化簡理求得tanα.
(2)整理sin(α+2β)=2sinα,利用兩角和公式化簡整理,等式兩邊同時(shí)除以cos(α+β)cosβ求得tan(α+β)=3tanβ.
解答:解:由已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

所以sin(α+2β)=2sinα
(1)sinβ=
3
5
,β是鈍角,所以cosβ=-
4
5
,可得sin2β=-
24
25
,cos2β=
7
25
,
代入sinαcos2β+cosαsin2β=2sinα化得tanα=-
24
43

(2)證明:因?yàn)閟in(α+2β)=2sinα,即sin[(α+β)+β]=2sin[(α+β)-β]
得sin(α+β)cosβ+cos(α+β)sinβ=2[sin(α+β)cosβ-cos(α+β)sinβ]
移項(xiàng)得sin(α+β)cosβ=3cos(α+β)sinβ,
等式兩邊同時(shí)除以cos(α+β)cosβ得tan(α+β)=3tanβ
點(diǎn)評:本題主要考查了三角恒等式的證明.解題的關(guān)鍵是利用了兩角和公式進(jìn)行化簡整理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,sinθ),
b
=(1,cosθ),(θ∈R)
(1)若
a
+
b
=(2,0)
,求sin2θ+2sinθcosθ得值.
(2)若
a
-
b
=(0,
1
5
),求sinθ+cosθ得值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,sinα,cosα),
b
=(-1,sinα,cosα)分別是直線l1、l2的方向向量,則直線l1、l2的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,sinα),
b
=(cosα,-1),且
a
b
,則銳角α的大小為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

(1)若sinβ=
3
5
,β是鈍角,求tanα的值;
(2)求證:tan(α+β)=3tanβ.

查看答案和解析>>

同步練習(xí)冊答案