【題目】為提升教師專業(yè)功底,引領(lǐng)青年教師成長(zhǎng),某市教育局舉行了全市“園丁杯”課堂教學(xué)比賽,在這次比賽中,通過(guò)采用錄像課評(píng)比的片區(qū)預(yù)賽,有共10位選手脫穎而出進(jìn)入全市決賽.決賽采用現(xiàn)場(chǎng)上課形式,從學(xué)科評(píng)委庫(kù)中采用隨機(jī)抽樣抽選代號(hào)1,2,3,…,7的7名評(píng)委,規(guī)則是:選手上完課,評(píng)委們當(dāng)初評(píng)分,并從7位評(píng)委評(píng)分中去掉一個(gè)最高分,去掉一個(gè)最低分,根據(jù)剩余5位評(píng)委的評(píng)分,算出平均分作為該選手的最終得分.記評(píng)委對(duì)某選手評(píng)分排名與該選手最終排名的差的絕對(duì)值為“評(píng)委對(duì)這位選手的分?jǐn)?shù)排名偏差”.排名規(guī)則:由高到低依次排名,如果選手分?jǐn)?shù)一樣,認(rèn)定名次并列(如:選手分?jǐn)?shù)一致排在第二,則認(rèn)為他們同屬第二名,沒(méi)有第三名,接下來(lái)分?jǐn)?shù)為第四名).七位評(píng)委評(píng)分情況如下表所示:

(1)根據(jù)最終評(píng)分表,填充如下表格:

(2)試借助評(píng)委評(píng)分分析表,根據(jù)評(píng)委對(duì)各選手的排名偏差的平方和,判斷評(píng)委4與評(píng)委5在這次活動(dòng)中誰(shuí)評(píng)判更準(zhǔn)確.

____號(hào)評(píng)委評(píng)分分析表

選手

A

B

C

D

E

F

G

H

I

J

最終排名

評(píng)分排名

排名偏差

(3)從這10位選手中任意選出3位,記其中評(píng)委4比評(píng)委5對(duì)選手排名偏差小的選手?jǐn)?shù)位,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】分析:(1)根據(jù)平均分的計(jì)算公式,即可求解,,即可填寫表格.

(2)對(duì)4和5號(hào)評(píng)委排名偏差平方和,即可作出判斷.

(3)由題意,得到隨機(jī)變量可能取值,求解取每個(gè)值的概率,即可得打分布列,利用期望的公式,即可求解數(shù)學(xué)期望.

詳解:(1)依據(jù)評(píng)分規(guī)則:,

.

所以選手的均分及最終排名表如下:

(2)對(duì)4號(hào)評(píng)委分析:

4號(hào)評(píng)委評(píng)分分析表

排名偏差平方和為: .

對(duì)5號(hào)評(píng)委分析:

5號(hào)評(píng)委評(píng)分分析表

排名偏差平方和為: .

由于,所以評(píng)委4更準(zhǔn)確.

(3)10位選手中,評(píng)委4比評(píng)委5評(píng)分偏差小的有5位,可能取值有0,1,2,3.

所以,,

,

所以的分布列為:

0

1

2

3

所以數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),中美貿(mào)易摩擦不斷.特別是美國(guó)對(duì)我國(guó)華為的限制.盡管美國(guó)對(duì)華為極力封鎖,百般刁難,并不斷加大對(duì)各國(guó)的施壓,拉攏他們抵制華為5G,然而這并沒(méi)有讓華為卻步.華為在2018年不僅凈利潤(rùn)創(chuàng)下記錄,海外增長(zhǎng)同樣強(qiáng)勁.今年,我國(guó)華為某一企業(yè)為了進(jìn)一步增加市場(chǎng)競(jìng)爭(zhēng)力,計(jì)劃在2020年利用新技術(shù)生產(chǎn)某款新手機(jī).通過(guò)市場(chǎng)分析,生產(chǎn)此款手機(jī)全年需投入固定成本250萬(wàn),每生產(chǎn)(千部)手機(jī),需另投入成本萬(wàn)元,且 ,由市場(chǎng)調(diào)研知,每部手機(jī)售價(jià)0.7萬(wàn)元,且全年內(nèi)生產(chǎn)的手機(jī)當(dāng)年能全部銷售完.

)求出2020年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千部)的函數(shù)關(guān)系式,(利潤(rùn)=銷售額—成本);

2020年產(chǎn)量為多少(千部)時(shí),企業(yè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x, y, z, 用綜合指標(biāo)S =" x" + y + z評(píng)價(jià)該產(chǎn)品的等級(jí). S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機(jī)抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號(hào)

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;

(Ⅱ) 在該樣品的一等品中, 隨機(jī)抽取兩件產(chǎn)品,

(1) 用產(chǎn)品編號(hào)列出所有可能的結(jié)果;

(2) 設(shè)事件B在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4”, 求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前共享單車基本覆蓋饒城市區(qū),根據(jù)統(tǒng)計(jì),市區(qū)所有人騎行過(guò)共享單車的人數(shù)已占,騎行過(guò)共享單車的人數(shù)中,有是學(xué)生(含大中專、高職及中學(xué)生),若市區(qū)人口按40萬(wàn)計(jì)算,學(xué)生人數(shù)約為9.6萬(wàn).

(1)任選出一名學(xué)生,求他(她)騎行過(guò)共享單車的概率;

(2)隨著單車投放數(shù)量增加,亂停亂放成為城市管理的問(wèn)題,如表是本市某組織累計(jì)投放單車數(shù)量與亂停亂放單車數(shù)量之間關(guān)系圖表:

累計(jì)投放單車數(shù)量

100000

120000

150000

200000

230000

亂停亂放單車數(shù)量

1400

1700

2300

3000

3600

計(jì)算關(guān)于的線性回歸方程(其中精確到,值保留三位有效數(shù)字),并預(yù)測(cè)當(dāng)時(shí),單車亂停亂放的數(shù)量;

(3)已知信州區(qū)、廣豐區(qū)、上饒縣、經(jīng)開區(qū)四區(qū)中,其中有兩個(gè)區(qū)的單車亂停亂放數(shù)量超過(guò)標(biāo)準(zhǔn),在“大美上饒”活動(dòng)中,檢查組隨機(jī)抽取兩個(gè)區(qū)調(diào)查單車亂停亂放數(shù)量,表示“單車亂停亂放數(shù)量超過(guò)標(biāo)準(zhǔn)的區(qū)的個(gè)數(shù)”,求的分布列和數(shù)學(xué)期望.

參考公式和數(shù)據(jù):回歸直線方程中的斜率和截距的最小二乘估計(jì)分別為

,,

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2)設(shè),對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一布袋中裝有個(gè)小球,甲,乙兩個(gè)同學(xué)輪流且不放回的抓球,每次最少抓一個(gè)球,最多抓三個(gè)球,規(guī)定:由乙先抓,且誰(shuí)抓到最后一個(gè)球誰(shuí)贏,那么以下推斷中正確的是( )

A. ,則乙有必贏的策略B. ,則甲有必贏的策略

C. ,則甲有必贏的策略D. ,則乙有必贏的策略

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某小區(qū)抽取50戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,將用電量的數(shù)據(jù)繪制成頻率分布直方圖如下.

(1)求頻率分布直方圖中的值并估計(jì)這50戶用戶的平均用電量;

(2)若將用電量在區(qū)間內(nèi)的用戶記為類用戶,標(biāo)記為低用電家庭,用電量在區(qū)間內(nèi)的用戶記為類用戶,標(biāo)記為高用電家庭,現(xiàn)對(duì)這兩類用戶進(jìn)行問(wèn)卷調(diào)查,讓其對(duì)供電服務(wù)進(jìn)行打分,打分情況見莖葉圖:

①?gòu)?/span>類用戶中任意抽取3戶,求恰好有2戶打分超過(guò)85分的概率;

②若打分超過(guò)85分視為滿意,沒(méi)超過(guò)85分視為不滿意,請(qǐng)?zhí)顚懴旅媪新?lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“滿意度與用電量高低有關(guān)”?

滿意

不滿意

合計(jì)

類用戶

類用戶

合計(jì)

附表及公式:

0.050

0.010

0.001

3.841

6.635

10.828

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的圖象如圖所示.

(1)求函數(shù)fx)的解析式;

(2)求函數(shù)fx)的單調(diào)增區(qū)間;

(3)若x∈[-,0],求函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間及極值;

(2)設(shè)時(shí),存在,使方程成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案