已知數(shù)列{an}是等差數(shù)列,a2=6,a5=12,數(shù)列{bn}的前n項(xiàng)和是Sn,且Sn+bn=1.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求證:數(shù)列{bn}是等比數(shù)列.
(3)記cn=,{cn}的前n項(xiàng)和為Tn,若Tn<對(duì)一切n∈N*都成立,求最小正整數(shù)m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,數(shù)列是公比為的等比數(shù)列,是和的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}滿足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),數(shù)列{bn}滿足b1=2,anbn+1=2an+1bn.
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求證:數(shù)列為等比數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)若數(shù)列{bn}滿足bn=(3n-1)an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn對(duì)一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列記
(1)求b1、b2、b3、b4的值;
(2)求數(shù)列的通項(xiàng)公式及數(shù)列的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{an}中,a1=1,{an}的前n項(xiàng)和Sn滿足2Sn=an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若存在n∈N*,使得λ≤,求實(shí)數(shù)λ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是等比數(shù)列的前項(xiàng)和,、、成等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使得?若存在,求出符合條件的所有的集合;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,且.
⑴證明:數(shù)列是等比數(shù)列,并寫(xiě)出通項(xiàng)公式;
⑵若對(duì)恒成立,求的最小值;
⑶若成等差數(shù)列,求正整數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com