精英家教網 > 高中數學 > 題目詳情

已知橢圓:的一個焦點為且過點.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設橢圓E的上下頂點分別為A1A2,P是橢圓上異于A1A2的任一點,直線PA1PA2分別交軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T
證明:線段OT的長為定值,并求出該定值.
(Ⅰ).(Ⅱ)線段的長為定值.

試題分析:(Ⅰ) 由題意得,,解得,
所以橢圓的方程為.
(Ⅱ)由(Ⅰ)可知,設,其中,
直線:,令,得;
直線:,令,得.
設圓的圓心為,半徑為
,
,

,所以,所以,
所以,即線段的長為定值.
點評::從近幾年課標地區(qū)的高考命題來看,解析幾何綜合題主要考查直線和圓錐曲線的位置關系以及范圍、最值、定點、定值、存在性等問題,直線與多種曲線的位置關系的綜合問題將會逐步成為今后命題的熱點,尤其是把直線和圓的位置關系同本部分知識的結合,將逐步成為今后命題的一種趨勢
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

曲線C1:,曲線C2,EF是曲線C1的任意一條直徑,P是曲線C2上任一點,則·的最小值為 (   )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的離心率,過雙曲線的左焦點的兩條切線,切點分別為、的大小等于(    )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設拋物線C的方程為y=4x,O為坐標原點,P為拋物線的準線與其對稱軸的交點,過焦點F且垂直于x軸的直線交拋物線于M、N兩點,若直線PM與ON相交于點Q,則cos∠MQN=
A.B.-C.D.-

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若拋物線頂點為坐標原點,對稱軸為x軸,焦點在3x-4y-12=0上,那么拋物線方程是(  )
A.y=16xB.y=-16xC.y=12xD.y=-12x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設拋物線的頂點在原點,準線方程為則拋物線的方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的離心率是,則雙曲線的漸近線方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知兩定點,動點在直線上移動,橢圓為焦點且經過點,記橢圓的離心率為,則函數的大致圖像是(   )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

分別為橢圓的左、右兩個焦點.
(Ⅰ) 若橢圓C上的點、兩點的距離之和等于4, 寫出橢圓C的方程和離心率.;
(Ⅱ) 若M、N是橢圓C上關于原點對稱的兩點,點P是橢圓上除M、N外的任意一點, 當直線PM、PN的斜率都存在, 并記為時, 求證: ·為定值.

查看答案和解析>>

同步練習冊答案