【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長(zhǎng)均相等,為的中點(diǎn).、分別是、上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足.當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中正確的是______ (填上所有正確命題的序號(hào)).
①平面平面;
②三棱錐的體積為定值;
③可能為直角三角形;
④平面與平面所成的銳二面角范圍為.
【答案】①②④
【解析】
由,得到線段一定過(guò)正方形的中心,由平面,可得平面平面;
由的面積不變,到平面的距離不變,可得三棱錐的體積為定值;
利用反證法思想說(shuō)明不可能為直角三角形;
平面與平面平行時(shí)所成角為0,當(dāng)與重合,與重合,平面與平面所成的銳二面角最大.
如圖:
當(dāng)、分別是、上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,則線段一定過(guò)正方形的中心,而平面,平面,可得平面平面,故①正確;
當(dāng)、分別是、上的動(dòng)點(diǎn)(含端點(diǎn)),過(guò)點(diǎn)作邊上的高的長(zhǎng)等于的長(zhǎng),所以的面積不變,由于平面,故點(diǎn)到平面的距離等于點(diǎn)到平面的距離,則點(diǎn)到平面的距離為定值,故三棱錐的體積為定值;所以②正確;
由可得: ,若為直角三角形,則一定是以為直角的直角三角形,但的最大值為,而此時(shí),的長(zhǎng)都大于,故不可能為直角三角形,所以③不正確;
當(dāng)、分別是、的中點(diǎn),平面與平面平行,所成角為0;
當(dāng)與重合,與重合,平面與平面所成銳二面角最大;
延長(zhǎng)角于,連接,則平面平面,由于為的中點(diǎn),,所以,且,故在中,為中點(diǎn),為中點(diǎn),
在中,為中點(diǎn),為中點(diǎn),故,由于平面,所以平面,則,, 所以平面與平面所成銳二面角最大為,故④正確;
故答案為①②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[10.5,14.5) 2 [14.5,18.5) 4 [18.5,22.5) 9 [22.5,26.5) 18
[26.5,30.5) 11 [30.5,34.5) 12 [34.5,38.5) 8 [38.5,42.5) 2
根據(jù)樣本的頻率分布估計(jì),數(shù)據(jù)落在[30.5,42.5)內(nèi)的概率約是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各隨機(jī)抽取了100件產(chǎn)品作為樣本來(lái)檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖是乙套設(shè)備的樣本的頻率分布直方圖.
表甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) | 2 | 10 | 36 | 38 | 12 | 2 |
(1)將頻率視為概率.若乙套設(shè)備生產(chǎn)了10000件產(chǎn)品,則其中的合格品約有多少件?
(2)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān).
甲套設(shè)備 | 乙套設(shè)備 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
附表及公式:,其中;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評(píng)分的波動(dòng)大小(不計(jì)算具體值,給出結(jié)論即可);
(2)把評(píng)分不低于70分的用戶稱為“評(píng)分良好用戶”,能否有的把握認(rèn)為“評(píng)分良好用戶”與性別有關(guān)?
參考附表:
參考公式,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點(diǎn),若,求(為坐標(biāo)原點(diǎn))面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x|.
(1)將函數(shù)f(x)寫成分段函數(shù);
(2)判斷函數(shù)的奇偶性,并畫出函數(shù)圖象.
(3)若函數(shù)在[a, +∞)上單調(diào),求a的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x|x-a|+bx(a,b∈R).
(Ⅰ)當(dāng)b=-1時(shí),函數(shù)f(x)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)b=1時(shí),
①若對(duì)于任意x∈[1,3],恒有f(x)≤2x2,求a的取值范圍;
②若a≥2,求函數(shù)f(x)在區(qū)間[0,2]上的最大值g(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)
(1)求b的值,并求出函數(shù)的定義域
(2)若存在區(qū)間,使得時(shí),的取值范圍為,求的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com