兩人相約在7點(diǎn)到8點(diǎn)在某地會(huì)面,先到者等候另一個(gè)人20分鐘方可離去.試求這兩人能會(huì)面的概率?

概率為

解析試題分析:建立坐標(biāo)系,找出會(huì)面的區(qū)域,用會(huì)面的區(qū)域面積:總區(qū)域面積.
以X、Y分別表示兩人到達(dá)時(shí)刻,建立直角坐標(biāo)系如圖:

則0≤X≤60, 0≤Y≤60。兩人能會(huì)面的充要條件是|X-Y|≤20
∴P=
考點(diǎn):幾何概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
根據(jù)世行2013年新標(biāo)準(zhǔn),人均GDP低于1035美元為低收入國(guó)家;人均GDP為1035-4085元為中等偏下收入國(guó)家;人均GDP為4085-12616美元為中等偏上收入國(guó)家;人均GDP不低于12616美元為高收入國(guó)家.某城市有5個(gè)行政區(qū),各區(qū)人口占該城市人口比例及人均GDP如下表:

(1)判斷該城市人均GDP是否達(dá)到中等偏上收入國(guó)家標(biāo)準(zhǔn);
(2)現(xiàn)從該城市5個(gè)行政區(qū)中隨機(jī)抽取2個(gè),求抽到的2個(gè)行政區(qū)人均GDP都達(dá)到中等偏上收入國(guó)家標(biāo)準(zhǔn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),質(zhì)檢部門(mén)規(guī)定的檢驗(yàn)方案是:先從這批產(chǎn)品中任取3件作檢驗(yàn),若3件產(chǎn)品都是合格品,則通過(guò)檢驗(yàn);若有2件產(chǎn)品是合格品,則再?gòu)倪@批產(chǎn)品中任取1件作檢驗(yàn),這1件產(chǎn)品是合格品才能通過(guò)檢驗(yàn);若少于2件合格品,則不能通過(guò)檢驗(yàn),也不再抽檢. 假設(shè)這批產(chǎn)品的合格率為80%,且各件產(chǎn)品是否為合格品相互獨(dú)立.
(1)求這批產(chǎn)品通過(guò)檢驗(yàn)的概率;
(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)為125元,并且所抽取的產(chǎn)品都要檢驗(yàn),記這批產(chǎn)品的檢驗(yàn)費(fèi)為元,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如下圖.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173 cm的同學(xué),求身高為176 cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為,且乙投球次均未命中的概率為
(1)求乙投球的命中率;
(2)若甲投球次,乙投球次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如下.記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.


 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班樣本中的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均“成績(jī)優(yōu)秀”的概率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷是否有90%的把握認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).
 
甲班(A方式)
乙班(B方式)
總計(jì)
成績(jī)優(yōu)秀
 
 
 
成績(jī)不優(yōu)秀
 
 
 
總計(jì)
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

受轎車(chē)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車(chē)的利潤(rùn)與該轎車(chē)首次出現(xiàn)故障的時(shí)間有關(guān).某轎車(chē)制造廠生產(chǎn)甲、乙兩種品牌轎車(chē),保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車(chē)中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

 
 

 
首次出現(xiàn)故障時(shí)間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車(chē)數(shù)量(輛)
2
3
45
5
45
每輛利潤(rùn)(萬(wàn)元)
1
2
3
1.8
2.9
 
將頻率視為概率,解答下列問(wèn)題:
(1)從該廠生產(chǎn)的甲品牌轎車(chē)中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的轎車(chē)均能售出,記生產(chǎn)一輛甲品牌轎車(chē)的利潤(rùn)為X1,生產(chǎn)一輛乙品牌轎車(chē)的利潤(rùn)為X2,分別求X1,X2的分布列;
(3)該廠預(yù)計(jì)今后這兩種品牌轎車(chē)銷(xiāo)量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車(chē).若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車(chē)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為加快新能源汽車(chē)產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國(guó)家對(duì)消費(fèi)者購(gòu)買(mǎi)新能源汽車(chē)給予補(bǔ)貼,其中對(duì)純電動(dòng)乘用車(chē)補(bǔ)貼標(biāo)準(zhǔn)如下表:

新能源汽車(chē)補(bǔ)貼標(biāo)準(zhǔn)
 
車(chē)輛類(lèi)型
 
續(xù)駛里程(公里)
 

 

 

 
純電動(dòng)乘用車(chē)
 
萬(wàn)元/輛
 
萬(wàn)元/輛
 
萬(wàn)元/輛
 
某校研究性學(xué)習(xí)小組,從汽車(chē)市場(chǎng)上隨機(jī)選取了輛純電動(dòng)乘用車(chē),根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:
分組
 
頻數(shù)
 
頻率
 

 

 

 

 

 

 

 

 

 
合計(jì)
 

 

 
 
(1)求,,的值;
(2)若從這輛純電動(dòng)乘用車(chē)中任選輛,求選到的輛車(chē)?yán)m(xù)駛里程都不低于公里的概率;
(3)若以頻率作為概率,設(shè)為購(gòu)買(mǎi)一輛純電動(dòng)乘用車(chē)獲得的補(bǔ)貼,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

袋中共有10個(gè)大小相同的編號(hào)為1、2、3的球,其中1號(hào)球有1個(gè),2號(hào)球有3個(gè),3號(hào)球有6個(gè).
(1)從袋中任意摸出2個(gè)球,求恰好是一個(gè)2號(hào)球和一個(gè)3號(hào)球的概率;
(2)從袋中任意摸出2個(gè)球,記得到小球的編號(hào)數(shù)之和為,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案