若對(duì)任意x∈A,y∈B,(A、B?R)有唯一確定的f(x,y)與之對(duì)應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出四個(gè)二元函數(shù):①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號(hào)是( 。
A、①B、②C、③D、④
分析:利用新定義的三個(gè)條件,若有一個(gè)不滿足,即不是“關(guān)于的x、y的廣義“距離”的函數(shù)”.分別進(jìn)行判斷即可得到結(jié)論.
解答:解:①對(duì)于函數(shù)f(x,y)=x2+y2:滿足非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);滿足對(duì)稱性:f(x,y)=f(y,x);
∵f(x,z)+f(z,y)=x2+z2+z2+y2≥x2+y2=f(x,y)對(duì)任意的實(shí)數(shù)z均成立,因此滿足三角形不等式:f(x,y)≤f(x,z)+f(z,y).
可知f(x,y)能夠成為關(guān)于的x、y的廣義“距離”的函數(shù).∴①成立.
②若f(x,y)=(x-y)2≥0,但是不僅x=y=0時(shí)取等號(hào),x=y≠0也成立,因此不滿足新定義:關(guān)于的x、y的廣義“距離”的函數(shù);∴②不成立.
③若f(x,y)=
x-y
;則不滿足f(x,y)=f(y,x),∴③不成立.
④若f(x,y)=sin(x-y).則不滿足f(x,y)=f(y,x),∴④不成立,
綜上可知:只有①滿足新定義,能夠成為關(guān)于的x、y的廣義“距離”的函數(shù).
故選:A.
點(diǎn)評(píng):本題主要考查新定義的應(yīng)用,根據(jù)函數(shù)的性質(zhì)分別進(jìn)行判斷,正確理解題意是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x∈A,y∈B,(A、B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出四個(gè)二元函數(shù):
①f(x,y)=x2+y2;②f(x,y)=(x-y)2f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x,y的二元函數(shù).
定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
給出三個(gè)二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
x-y

請(qǐng)選出所有能夠成為關(guān)于x,y的廣義“距離”的序號(hào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省華南師大附中高三綜合測(cè)試數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案