如圖,公園有一塊邊長(zhǎng)為2的等邊△ABC的邊角地,現(xiàn)修成草坪, 圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1).設(shè)AD=x(x≥0),DE=y,求用x表示y的函數(shù)關(guān)系式,并求函數(shù)的定義域;
(2).如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長(zhǎng),DE的位置又應(yīng)在哪里?請(qǐng)予證明.
(1);(2)如果DE是水管,DE的位置在AD=AE=處,如果DE是參觀路線,則DE為AB中線或AC中線時(shí),DE最長(zhǎng),證明過(guò)程詳見(jiàn)解析.
解析試題分析:(1)在△ADE中,利用余弦定理可得,又根據(jù)面積公式可得,消去AE后即可得到y(tǒng)與x的函數(shù)關(guān)系式,又根據(jù)可以得到x的取值范圍;(2)如果DE是水管,則問(wèn)題等價(jià)于當(dāng)時(shí),求的最小值,利用基本不等式即可求得當(dāng)時(shí),y有最小值為,如果DE是參觀路線,則問(wèn)題等價(jià)于問(wèn)題等價(jià)于當(dāng)時(shí),求的最小值,根據(jù)函數(shù)在[1,2]上的單調(diào)性,可得當(dāng)x=1或2時(shí),y有最小值.
(1)在△ADE中,由余弦定理:①
又∵ ②
②代入①得(y>0), ∴,
由題意可知,所以函數(shù)的定義域是,
;
(2)如果DE是水管,
當(dāng)且僅當(dāng),即x=時(shí)“=”成立,故DE∥BC,且DE=.
如果DE是參觀線路,記,可知函數(shù)在[1,]上遞減,在[,2]上遞增,
故 ∴y max=.即DE為AB中線或AC中線時(shí),DE最長(zhǎng).
考點(diǎn):1、平面向量的數(shù)量積;2、三角形面積計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A、B、C為三角形ABC的三內(nèi)角,其對(duì)應(yīng)邊分別為a,b,c,若有2acosC=2b+c成立.
(1)求A的大;(2)若,,求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知ΔABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量,, .
(1)若//,求證:ΔABC為等腰三角形;
(2)若⊥,邊長(zhǎng),角,求ΔABC的面積 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a=2,.
(1)若b=4,求sin A的值;
(2)若△ABC的面積S△ABC=4,求b,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=cos+2cos2,x∈R.
(1)求f(x)的值域;
(2)記△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若f(B)=1,b=1,c=,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com