連擲兩次骰子得到的點(diǎn)數(shù)分別為m和n,記向量a=(m,n)與向量b=(1,-1)的夾角為θ,則θ∈(0,]的概率是(    )

A.                    B.                    C.                   D.

解析:∵a·b=|a||b|cosθ,θ∈(0,],

a·b≥0,即m-n≥0,

∴滿足條件的投擲骰子的種數(shù)為21種.

∴θ∈(0,]的概率是.

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若連擲兩次骰子,分別得到的點(diǎn)數(shù)是m、n,將m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在區(qū)域|x-2|+|y-2|≤2內(nèi)的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若連擲兩次骰子分別得到的點(diǎn)數(shù)是m、n,將m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在區(qū)域|x-2|+|y-2|≤2內(nèi)的概率是(    )

A.             B.               C.               D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若連擲兩次骰子,分別得到的點(diǎn)數(shù)是m、n,將m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在區(qū)域|x-2|+|y-2|≤2內(nèi)的概率是( 。
A.
11
36
B.
1
6
C.
1
4
D.
7
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第3章 概率》2013年單元測(cè)試卷(解析版) 題型:選擇題

若連擲兩次骰子,分別得到的點(diǎn)數(shù)是m、n,將m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在區(qū)域|x-2|+|y-2|≤2內(nèi)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若連擲兩次骰子,分別得到的點(diǎn)數(shù)是m、n,將m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在區(qū)域|x-2|+|y-2|≤2內(nèi)的概率是(    )

A.              B.              C.            D.

查看答案和解析>>

同步練習(xí)冊(cè)答案