【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得, ,
,
(1).求家庭的月儲蓄對月收入的線性回歸方程;
(2).判斷變量與之間的正相關還是負相關;
(3).若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘估計公式分別為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)且.
(Ⅰ) 若1是關于x的方程的一個解,求t的值;
(Ⅱ) 當且時,解不等式;
(Ⅲ)若函數(shù)在區(qū)間(-1,2]上有零點,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下命題正確的個數(shù)為( ) ①存在無數(shù)個α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;
②在△ABC中,“A> ”是“sinA> ”的充要條件;
③命題“在△ABC中,若sinA=sinB,則A=B”的逆否命題是真命題;
④命題“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠ ”.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2-2x+4y-4=0,
(1)求圓C關于直線對稱的圓的方程;
(2)問是否存在斜率為1的直線l,使l被圓C截得弦AB,且以AB為直徑的圓經過點?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設不等式組 ,表示的平面區(qū)域為D,在區(qū)域D內隨機取一個點,則此點到坐標原點的距離大于2的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國科學院亞熱帶農業(yè)生態(tài)研究所2017年10月16日正式發(fā)布一種水稻新種質,株高可達2.2米以上,具有高產、抗倒伏、抗病蟲害、酎淹澇等特點,被認為開啟了水稻研制的一扇新門.以下是兩組實驗田中分別抽取的6株巨型稻的株高,數(shù)據(jù)如下(單位:米).
: 1.7 1.8 1.9 2.2 2.4 2.5
: 1.8 1.9 2.0 2.0 2.4 2.5
(1)繪制兩組數(shù)據(jù)的莖葉圖,并求出組數(shù)據(jù)的中位數(shù)和組數(shù)據(jù)的方差;
(2)從組樣本中隨機抽取2株,請列出所有的基本事件,并求至少有一株超過組株高平均值的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】寧德被譽為“中國大黃魚之鄉(xiāng)”,海域面積4.46萬平方公里,水產資源極為豐富.“寧德大黃魚”作為福建寧德地理標志產品,同時也是寧德最具區(qū)域特色的海水養(yǎng)殖品種,全國80%以上的大黃魚產自寧德,年產值超過60億元.現(xiàn)有一養(yǎng)殖戶為了解大黃魚的生長狀況,對其漁場中100萬尾魚的凈重(單位:克)進行抽樣檢測,將抽樣所得數(shù)據(jù)繪制成頻率分布直方圖如圖.其中產品凈重的范圍是,已知樣本中產 品凈重小于100克的有360尾.
(1)計算樣本中大黃魚的數(shù)量;
(2)假設樣本平均值不低于101.3克的漁場為級漁場,否則為級漁場.那么要使得該漁場為級漁場,則樣本中凈重在的大黃魚最多有幾尾?
(3)為提升養(yǎng)殖效果,該養(yǎng)殖戶進行低沉性配合飼料養(yǎng)殖,凈重小于98克的每4萬尾合用一個網箱,大于等于98克的每3萬尾合用一個網箱.根據(jù)(2)中所求的最大值,估計該養(yǎng)殖戶需要準備多少個網箱?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖是正方體的平面展開圖,在這個正方體中:① 與 平行;② 與 是異面直線;③ 與 成 角;④ 與 垂直;以上四個命題中,正確的是( )
A.①②③
B.②④
C.②③④
D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)若函數(shù) 有極值,求實數(shù) 的取值范圍;
(Ⅱ)當 有兩個極值點(記為 和 )時,求證: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com