已知拋物線(xiàn)C的頂點(diǎn)是橢圓
x2
4
+
y2
3
=1
的中心,且焦點(diǎn)與該橢圓右焦點(diǎn)重合.
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)若P(a,0)為x軸上一動(dòng)點(diǎn),過(guò)P點(diǎn)作直線(xiàn)交拋物線(xiàn)C于A、B兩點(diǎn).
(。┰O(shè)S△AOB=t•tan∠AOB,試問(wèn):當(dāng)a為何值時(shí),t取得最小值,并求此最小值.
(ⅱ)若a=-1,點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為D,證明:直線(xiàn)BD過(guò)定點(diǎn).
(Ⅰ)由題意,設(shè)拋物線(xiàn)C的標(biāo)準(zhǔn)方程為y2=2px(x>0),焦點(diǎn)F(
p
2
,0),
∵橢圓
x2
4
+
y2
3
=1
的右焦點(diǎn)為(1,0),
p
2
=1
,即p=2,
∴拋物線(xiàn)方程為:y2=4x,…(4分)
(Ⅱ)(。┰O(shè)直線(xiàn)AB:my=x-a.
聯(lián)立
my=x-a
y2=4x
,消x得
y2
4
-my-a
=0,
設(shè)A(x1,y1),B(x2,y2),則y1y2=-4a,x1x2=
y21
y22
16
=a2
,…(6分)
由S△AOB=
1
2
|OA|•|OB|•sin∠AOB

=
1
2
|OA|•|OB|•cos∠AOB•tan∠AOB
,
t=
1
2
|OA|•|OB|•cos∠AOB
,
|OA|•|OB|•cos∠AOB=
OA
OB
=x1x2+y1y2
,…(8分)
t=
1
2
(x1x2+y1y2)=
1
2
(a2-4a)=
1
2
(a-2) 2-2≥-2

∴當(dāng)a=2時(shí),t有最小值一2.…(10分)
(ⅱ)由(ⅰ)可知D(x1,-y1),y1+y2=4m,y1y2=4,
直線(xiàn)BD的方程為y-y2=
y1+y2
x2-x1
•(x-x2)
,
y-y2=
y2+y1
y22
4
-
y21
4
•(x-
y22
4
)

y=y2+
4
y2-y1
(x-
y22
4
)

∴y=
4
y2-y1
x-
4
y2-y1
=
4
y2-y1
(x-1)
,
∴直線(xiàn)BD過(guò)定點(diǎn)(1,0).…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C的頂點(diǎn)是橢圓
x2
4
+
y2
3
=1
的中心,焦點(diǎn)F與該橢圓的右焦點(diǎn)F重合,拋物線(xiàn)C與橢圓的交點(diǎn)為P,延長(zhǎng)PF交拋物線(xiàn)C交于Q,
(1)求拋物線(xiàn)C的方程;
(2)求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C的頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸是x軸,且點(diǎn)P(1,-2)在該拋物線(xiàn)上,A,B是該拋物線(xiàn)上的兩個(gè)點(diǎn).
(Ⅰ)求該拋物線(xiàn)的標(biāo)準(zhǔn)方程及焦點(diǎn)坐標(biāo);
(Ⅱ)若直線(xiàn)AB經(jīng)過(guò)點(diǎn)M(4,0),證明:以線(xiàn)段AB為直徑的圓恒過(guò)坐標(biāo)原點(diǎn);
(Ⅲ)若直線(xiàn)AB經(jīng)過(guò)點(diǎn)N(0,4),且滿(mǎn)足
BN
=4
AN
,求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C的頂點(diǎn)是橢圓
x2
4
+
y2
3
=1
的中心,且焦點(diǎn)與該橢圓右焦點(diǎn)重合.
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)若P(a,0)為x軸上一動(dòng)點(diǎn),過(guò)P點(diǎn)作直線(xiàn)交拋物線(xiàn)C于A、B兩點(diǎn).
(。┰O(shè)S△AOB=t•tan∠AOB,試問(wèn):當(dāng)a為何值時(shí),t取得最小值,并求此最小值.
(ⅱ)若a=-1,點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為D,證明:直線(xiàn)BD過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波四中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知拋物線(xiàn)C的頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸是x軸,且點(diǎn)P(1,-2)在該拋物線(xiàn)上,A,B是該拋物線(xiàn)上的兩個(gè)點(diǎn).
(Ⅰ)求該拋物線(xiàn)的標(biāo)準(zhǔn)方程及焦點(diǎn)坐標(biāo);
(Ⅱ)若直線(xiàn)AB經(jīng)過(guò)點(diǎn)M(4,0),證明:以線(xiàn)段AB為直徑的圓恒過(guò)坐標(biāo)原點(diǎn);
(Ⅲ)若直線(xiàn)AB經(jīng)過(guò)點(diǎn)N(0,4),且滿(mǎn)足,求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山東省高考數(shù)學(xué)預(yù)測(cè)試卷(05)(解析版) 題型:解答題

已知拋物線(xiàn)C的頂點(diǎn)是橢圓的中心,且焦點(diǎn)與該橢圓右焦點(diǎn)重合.
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)若P(a,0)為x軸上一動(dòng)點(diǎn),過(guò)P點(diǎn)作直線(xiàn)交拋物線(xiàn)C于A、B兩點(diǎn).
(ⅰ)設(shè)S△AOB=t•tan∠AOB,試問(wèn):當(dāng)a為何值時(shí),t取得最小值,并求此最小值.
(ⅱ)若a=-1,點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為D,證明:直線(xiàn)BD過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案