(本小題共14分)
已知橢圓C:,左焦點,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點(不是左、右頂點),且以為直徑的圓經過橢圓C的右頂點A. 求證:直線過定點,并求出定點的坐標.
(1) (2) 直線過定點,且定點的坐標為
解析試題分析:解:(Ⅰ)由題意可知: ……1分
解得 ………2分
所以橢圓的方程為: ……3分
(II)證明:由方程組 …4分
整理得 ………..5分
設
則 …….6分
由已知,且橢圓的右頂點為 ………7分
……… 8分
即
也即 …… 10分
整理得: ……11分
解得均滿足 ……12分
當時,直線的方程為,過定點(2,0)與題意矛盾舍去……13分
當時,直線的方程為,過定點
故直線過定點,且定點的坐標為 …….14分
考點:直線與橢圓的位置關系
點評:解決的關鍵是熟練的根據橢圓的性質來得到橢圓的方程,同時能結合聯(lián)立方程組的思想來,韋達定理和垂直關系,得到直線方程,進而求解。屬于基礎題。
科目:高中數學 來源: 題型:解答題
已知橢圓的長軸長是短軸長的兩倍,焦距為.
(1)求橢圓的標準方程;
(2)設不過原點的直線與橢圓交于兩點、,且直線、、的斜率依次成等比數列,求△面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩點及,點在以、為焦點的橢圓上,且、、構成等差數列.
(1)求橢圓的方程;
(2)如圖7,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,. 求四邊形面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題13分)在平面直角坐標系中,是拋物線的焦點,是拋物線上位于第一象限內的任意一點,過三點的圓的圓心為,點到拋物線的準線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點,使得直線與拋物線相切于點?若存在,求出點的坐標;若不存在,說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分14分)
已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
(3)過原點的直線交橢圓于點,求面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓:的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于兩點,與拋物線交于兩點,且。
(1)求橢圓的方程;
(2)若過點的直線與橢圓相交于兩點,設為橢圓上一點,且滿足
為坐標原點),當時,求實數的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com