已知鐵礦石A和B的含鐵率為a,冶煉每萬噸鐵礦石的排放量為b,及每萬噸鐵礦石的價格c,如表:

某冶煉廠至少要生產(chǎn)1.9(萬噸)鐵,若要求CO2的排放量不超過2(萬噸),則購買鐵礦石的最少費用為    (百萬元).
【答案】分析:由已知條件中,鐵礦石A和B的含鐵率a,冶煉每萬噸鐵礦石的CO2排放量b及每萬噸鐵礦石的價格c,對應的表格,再根據(jù)生產(chǎn)量不少于 1.9(萬噸)鐵,及CO2的排放量不超過2(萬噸)我們可以構(gòu)造出約束條件,并畫出可行域,利用角點法求出購買鐵礦石的最少費用.
解答:解:答案:15解析設(shè)鐵礦石A購買了x萬噸,鐵礦石B購買了y萬噸,購買鐵礦石的費用為z百萬元,則由題設(shè)知,本題即求實數(shù)x,y滿足約束條件,
時,z=3x+6y的最小值.
作不等式組對應的平面區(qū)域,如圖陰影部分所示.
現(xiàn)讓直線z=3x+6y,
平移分析即知,
當直線經(jīng)過點P時,z取得最小值.
又解方程組得點P坐標為(1,2).
故zmin=3×1+6×2=15.
故答案為:15.
點評:在解決線性規(guī)劃的應用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件⇒②由約束條件畫出可行域⇒③分析目標函數(shù)Z與直線截距之間的關(guān)系⇒④使用平移直線法求出最優(yōu)解⇒⑤還原到現(xiàn)實問題中.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知鐵礦石A和B的含鐵率為a,冶煉每萬噸鐵礦石的排放量為b,及每萬噸鐵礦石的價格c,如表:
精英家教網(wǎng)
某冶煉廠至少要生產(chǎn)1.9(萬噸)鐵,若要求CO2的排放量不超過2(萬噸),則購買鐵礦石的最少費用為
 
(百萬元).

查看答案和解析>>

同步練習冊答案