設橢圓數(shù)學公式的左、右焦點分別為F1、F2,A是橢圓上的一點,AF2⊥AF1,原點O到直線AF1的距離為數(shù)學公式,則橢圓的離心率為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:先利用三角形中位線定理,計算F2A=2OB=c,再利用勾股定理計算F1A=c,最后利用橢圓定義,計算長軸長2a,進而求得橢圓離心率
解答:如圖,設|F1F2|=2c,依題意,OB⊥F1A,OB=
∵O為F1F2的中點,AF2⊥AF1,
∴OB∥F2A,且F2A=2OB=c
∴F1A==c
∴2a=c+c
∴橢圓的離心率為e=====
故選B
點評:本題主要考查了橢圓的定義、橢圓的標準方程、橢圓的幾何性質,橢圓離心率的求法,屬基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知中心在坐標原點、焦點在x軸上橢圓的離心率e=
3
3
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標準方程;
(2)設橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年四川卷理)設橢圓的左、右焦點分別是、,離心率,右準線上的兩動點、,且

(Ⅰ)若,求的值;

(Ⅱ)當最小時,求證共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分) 已知橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。(I)求a與b;(II)設橢圓的左,右焦點分別是F1和F2,直線且與x軸垂直,動直線軸垂直,于點P,求線段PF1的垂直平分線與的交點M的軌跡方程,并指明曲線類型。

查看答案和解析>>

科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

設橢圓的左、右焦點分別是F1、F2,離心率,右準線l上的兩動點M、N,且
(Ⅰ)若,求a、b的值;
(Ⅱ)當最小時,求證共線。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省黃山市休寧中學高三(上)數(shù)學綜合練習試卷1(文科)(解析版) 題型:解答題

已知中心在坐標原點、焦點在x軸上橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標準方程;
(2)設橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

查看答案和解析>>

同步練習冊答案