17.已知F是雙曲線$\frac{x^2}{{3{a^2}}}-\frac{y^2}{a^2}=1({a>0})$的右焦點,O為坐標原點,設(shè)P是雙曲線上的一點,則∠POF的大小不可能是( 。
A.165°B.60°C.25°D.15°

分析 求出雙曲線的漸近線與x軸的夾角,畫出圖象判斷P在雙曲線左右兩支時,∠POF的大小范圍,即可判斷選項.

解答 解:因為雙曲線$\frac{x^2}{{3{a^2}}}-\frac{y^2}{a^2}=1({a>0})$的漸近線為y=±$\frac{\sqrt{3}}{3}$x,
所以雙曲線的漸近線與x軸的夾角為30°,如圖,如果P在雙曲線的左支,則∠POF∈(0°,30°).
如果P 在雙曲線的右支,則∠POF∈(150°,180°],
所以∠POF不可能為60°.
故選B.

點評 本題考查雙曲線的基本性質(zhì),數(shù)形結(jié)合的思想,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.數(shù)列{an}是等差數(shù)列,數(shù)列{bn}滿足bn=anan+1an+2(n∈N*),設(shè)Sn為{bn}的前n項和,若${a_{12}}=\frac{5}{8}{a_5}>0$,則當Sn取得最大值時n的值為( 。
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)定義在實數(shù)集R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若實數(shù)a滿足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(-1),則a的取值范圍是( 。
A.[2,+∞]∪(-∞,$\frac{1}{2}$]B.(0,$\frac{1}{2}$]∪[2,+∞)C.[$\frac{1}{2}$,2]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖所示,在?ABCD中,E為CD上一點,DE:CE=2:3,連接AE,BE,BD,且AE,BD交與點F,則S△DEF:S△EBF:S△ABF等于( 。
A.4:10:25B.4:9:25C.2:3:5D.2:5:25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.正方體ABCD-A1B1C1D1中直線BC1與平面BB1D1D所成角的余弦值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在空間直角坐標系中,點(1,2,3)關(guān)于平面xoy對稱的點坐標是(1,2,-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓E的兩個焦點分別為(0,-1)和(0,1),離心率e=$\frac{\sqrt{2}}{2}$
(1)求橢圓E的方程
(2)若直線l:y=kx+m(k≠0)與橢圓E交于不同的兩點A、B,且線段AB的垂直平分線過定點P(0,$\frac{1}{2}$),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.曲線y=x2+1在P($\frac{1}{2}$,$\frac{5}{4}$)處的切線的傾斜角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,$B=\frac{π}{6}$.求cosA+sinC取值范圍.

查看答案和解析>>

同步練習冊答案