【題目】在育民中學舉行的電腦知識競賽中,將九年級兩個班參賽的學生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.
(1)求第二小組的頻率,并補全這個頻率分布直方圖;
(2)求這兩個班參賽的學生人數(shù)是多少?
(3)求這兩個班參賽學生的成績的中位數(shù).
【答案】(1)見解析(2)100(3)64.5
【解析】
(1)由頻率之和等于1可計算出第二小組的頻率,再補全頻率分布直方圖;(2)由總數(shù)頻數(shù)頻率計算;(3)根據(jù)頻率分布直方圖中的中位數(shù)計算公式求解.
(1)各小組的頻率之和為1.00,第一、三、四、五小組的頻率分別是0.30,0.15,0.10,0.05.
∴第二小組的頻率為:1.00-(0.30+0.15+0.10+0.05)=0.40.
∴落在59.5~69.5的第二小組的小長方形的高==0.04.
則補全的直方圖如圖所示.
(2)設九年級兩個班參賽的學生人數(shù)為x人.
∵第二小組的頻數(shù)為40人,頻率為0.40,
∴=0.40,解得x=100(人).
所以九年級兩個班參賽的學生人數(shù)為100人.
(3)∵(0.03+0.04)×10>0.5
所以九年級兩個班參賽學生的成績的中位數(shù)應落在第二小組內.
設中位數(shù)為x則0.03×10+(x-59.5)×0.04=0.5得x=64.5.
所以中位數(shù)為64.5.
科目:高中數(shù)學 來源: 題型:
【題目】定義:曲線C上的點到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實數(shù)a=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導函數(shù).
(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求gn(x)的表達式;
(2)若f(x)≥ag(x)恒成立,求實數(shù)a的取值范圍;
(3)設n∈N+ , 比較g(1)+g(2)+…+g(n)與n﹣f(n)的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABC—DEF中,若AB//DE,BC//EF.
(1)求證:平面ABC//平面DEF;
(2)已知是二面角C-AD-E的平面角.求證:平面ABC平面DABE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是中國古代第一部數(shù)學專著,成于公元一世紀左右,系統(tǒng)總結了戰(zhàn)國、秦、漢時期的數(shù)學成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經(jīng)驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長為的弧田.其實際面積與按照上述經(jīng)驗公式計算出弧田的面積之間的誤差為( )平方米.(其中,)
A. 15 B. 16 C. 17 D. 18
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產品的廣告支出x(單位:萬元)與銷售收入y(單位:萬元)之間有下表所對應的數(shù)據(jù):
廣告支出x(單位:萬元) | 1 | 2 | 3 | 4 |
銷售收入y(單位:萬元) | 12 | 28 | 42 | 56 |
(1)畫出表中數(shù)據(jù)的散點圖;
(2)求出y對x的回歸直線方程;
(3)若廣告費為9萬元,則銷售收入約為多少萬元?
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在十九大“建設美麗中國”的號召下,某省級生態(tài)農業(yè)示范縣大力實施綠色生產方案,對某種農產品的生產方式分別進行了甲、乙兩種方案的改良。為了檢查甲、乙兩種方案的改良效果,隨機在這兩種方案中各任意抽取了件產品作為樣本逐件稱出它們的重量(單位:克),重量值落在之間的產品為合格品,否則為不合格品。下表是甲、乙兩種方案樣本頻數(shù)分布表。
產品重量 | 甲方案頻數(shù) | 乙方案頻數(shù) |
(1)求出甲(同組中的重量值用組中點值代替)方案樣本中件產品的平均數(shù);
(2)若以頻率作為概率,試估計從兩種方案分別任取件產品,恰好兩件產品都是合格品的概率分別是多少;
(3)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并回答有多大把握認為“產品是否為合格品與改良方案的選擇有關”.
甲方案 | 乙方案 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
參考公式: ,其中.
臨界值表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,,令.
(Ⅰ)研究函數(shù)的單調性;
(Ⅱ)若關于的不等式恒成立,求整數(shù)的最小值;
(Ⅲ),正實數(shù),滿足,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com