已知ab0,求證:2a3b3≥2ab2a2b.

 

見解析

【解析】2a3b3(2ab2a2b)2a(a2b2)b(a2b2)(a2b2)(2ab)(ab)(ab)(2ab)

因為ab0,所以ab≥0ab0,2ab0,

從而(ab)(ab)(2ab)≥0,故2a3b3≥2ab2a2b.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:解答題

已知Sn是數(shù)列{an}的前n項和,且anSn12(n≥2),a12.

(1)求數(shù)列{an}的通項公式.

(2)設(shè)bnTnbn1bn2b2n,是否存在最大的正整數(shù)k,使得

對于任意的正整數(shù)n,有Tn恒成立?若存在,求出k的值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-2導(dǎo)數(shù)及其應(yīng)用練習(xí)卷(解析版) 題型:解答題

甲方是一農(nóng)場,乙方是一工廠.由于乙方生產(chǎn)需占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補(bǔ)經(jīng)濟(jì)損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤x()與年產(chǎn)量t()滿足函數(shù)關(guān)系x2 000.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方S(以下稱S為賠付價格)

(1)將乙方的年利潤w()表示為年產(chǎn)量t()的函數(shù),并求出乙方獲得最大利潤的年產(chǎn)量;

(2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額y0.002t2(),在乙方按照獲得最大利潤的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價格S是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:選擇題

函數(shù)y的定義域是(   )

A[,-1)(1] B(,-1)(1,)

C[2,-1)(1,2] D(2,-1)(1,2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-2算法與程序框圖等練習(xí)卷(解析版) 題型:選擇題

某高校從5名男大學(xué)生志愿者和4名女大學(xué)生志愿者中選出3名派到3所學(xué)校支教(每所學(xué)校一名志愿者),要求這3名志愿者中男、女大學(xué)生都有,則不同的選派方案共有 (  )

A210B420

C630D840

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:填空題

不等式|x2||x|≤1的解集是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:解答題

已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2sin θ.

(1)C1的參數(shù)方程化為極坐標(biāo)方程;

(2)C1C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-1練習(xí)卷(解析版) 題型:解答題

如圖已知圓上的弧,C點的圓的切線與BA的延長線交于E

證明:

(1)ACEBCD;

(2)BC2BE·CD.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-1練習(xí)卷(解析版) 題型:選擇題

5的二項展開式中,x的系數(shù)為(  )

A10 B.-10 C40 D.-40

 

查看答案和解析>>

同步練習(xí)冊答案