【題目】今天你低碳了嗎?近來國內(nèi)網(wǎng)站流行一種名為“碳排放計算器”的軟件,人們可以由此計算出自己每天的碳排放量,如家居用電的碳排放量(千克)耗電度數(shù),汽車的碳排放量(千克)油耗公升數(shù)等,某班同學(xué)利用寒假在兩個小區(qū)逐戶進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查.若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,這二族人數(shù)占各自小區(qū)總?cè)藬?shù)的比例數(shù)據(jù)如下:

小區(qū)

低碳族

非低碳族

小區(qū)

低碳族

非低碳族

比例

1/2

1/2

比例

4/5

1/5

1)如果甲、乙來自小區(qū),丙、丁來自小區(qū),求這4人中恰好有兩人是低碳族的概率;

2小區(qū)經(jīng)過大力宣傳,每周非低碳中有20%的人加入到低碳族的行列,如果兩周后隨機(jī)地從小區(qū)中任選5個人,記表示5個人中的低碳族人數(shù),求

【答案】12,

【解析】

1)這4人中恰好有兩人是低碳族分三類:甲、乙低碳族,丙、丁非低碳族;甲、乙非低碳族,丙、丁低碳族;甲、乙中一人低碳族,一人非低碳族,丙、丁一人低碳族,一人非低碳族,每類中按獨(dú)立事件求概率,再求和即可;
2)首先求出兩周后小區(qū)中非低碳族的概率,服從二項分布,利用二項分布的期望和方差公式求解即可.

解:(1)記這4人中恰好有2人是低碳族為事件

;

2)設(shè)小區(qū)有人,2周后非低碳族的概率,

2周后低碳族的概率

依題意,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人2013-2017這五年的年度體檢的血壓值的折線圖如圖所示.

(1)根據(jù)散點(diǎn)圖,直接判斷甲、乙這五年年度體檢的血壓值誰的波動更大,并求波動更大者的方差;

(2)根據(jù)乙這五年年度體檢血壓值的數(shù)據(jù),求年度體檢血壓值關(guān)于年份的線性回歸方程,并據(jù)此估計乙在2018年年度體檢的血壓值.

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有女子善織,日益功,疾,初日織五尺,今一月織七匹三丈(1=尺,一丈=尺),問日益幾何?”其意思為:“有一女子擅長織布,每天比前一天更加用功,織布的速度也越來越快,從第二天起,每天比前一天多織相同量的布,第一天織尺,一月織了七匹三丈,問每天增加多少尺布?”若這一個月有天,記該女子一個月中的第天所織布的尺數(shù)為,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn),直線.

1)求與直線l垂直,且與圓C相切的直線方程;

2)在x軸上是否存在定點(diǎn)B(不同于點(diǎn)A),使得對于圓C上任一點(diǎn)P,為常數(shù)?若存在,試求這個常數(shù)值及所有滿足條件的點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDEF中,四邊形ABCD為矩形,二面角A-CD-F60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.

(1)求證:BF∥平面ADE;

(2)在線段CF上求一點(diǎn)G,使銳二面角B-EG-D的余弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,平面底面ABC,四邊形是正方形,,Q是的中點(diǎn),且,

求證:平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1axby)n的展開式中不含y的項的系數(shù)的絕對值的和為32,則an的值可能為( )

A.a=2,n=5B.a=1,n=6C.a=-1,n=5D.a=1n=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民收入也逐年增加.為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了201850位農(nóng)民的年收入并制成如下頻率分布直方圖:

附:參考數(shù)據(jù)與公式 ,若 ,則① ;② ;③ .

1)根據(jù)頻率分布直方圖估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

2)由頻率分布直方圖可以認(rèn)為該貧困地區(qū)農(nóng)民年收入 X 服從正態(tài)分布 ,其中近似為年平均收入 近似為樣本方差 ,經(jīng)計算得:,利用該正態(tài)分布,求:

i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

ii)為了調(diào)研精準(zhǔn)扶貧,不落一人的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每個農(nóng)民的年收入相互獨(dú)立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.

1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2)已知每檢測一件產(chǎn)品需要費(fèi)用50元,設(shè)表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費(fèi)用(單位:元),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案