精英家教網如圖,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高為3,O為AB中點,PO⊥平面ABCD,垂足為O,PO=2,EA∥PO.
(1)求證:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.
分析:(1)欲證BD⊥平面EAC,根據直線與平面垂直的判定定理可知只需證BD與平面EAC內兩相交直線垂直,取CD中點M,以AB中點O為坐標原點,OA、OM、OP為x軸、y軸、z軸建立直角坐標系,根據向量數(shù)量積可知BD⊥AC,而BD⊥AE,滿足定理所需條件;
(2)先求出平面PAC的一個法向量,結合圖形可知
BD
是平面EAC的一個法向量,然后利用向量的夾角公式求出此角的余弦值即為二面角E-AC-P的余弦值.
解答:精英家教網解:(1)證:如圖,取CD中點M,以AB中點O為坐標原點,OA、OM、OP為x軸、y軸、z軸建立直角坐標系,
則A(2,0,0),B(-2,0,0),C(-1,3,0),D(1,3,0),
AC
=(-3,3,0),
BD
=(3,3,0),
AC
BD
=-3×3+3×3=0

∴BD⊥AC、(4分)
∵AE∥PO,PO⊥平面ABCD,∴AE⊥平面ABCD得BD⊥AE,
∴BD⊥平面EAC
(2)P(0,0,2),
AP
=(-2,0,2),設平面PAC的一個法向量
n
=(x,y,z)
,
AP
n
=0
AC
n
=0
-2x+2z=0
-3x+3y=0
設x=1得
n
=(1,1,1)
BD
=(3,3,0)是平面EAC的一個法向量
cos<
n
,
BD
>=
n
BD
|
n
||
BD
|
=
3+3
3
2
3
=
6
3
.故二面角E-AC-P的余弦值
6
3
.(12分)
點評:本小題主要考查直線與平面的位置關系、二面角及其平面角等有關知識,考查空間想象能力和思維能力,應用向量知識解決立體幾何問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一簡單組合體ABCDEF如圖所示,已知M、N、P分別為AF,BD,EF的中點.
(1)求證:MN∥平面BCF;
(2)求證:AP⊥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-1;幾何證明選講.
如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.
求證:DE•DC=AE•BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河北模擬)如圖,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分別為CD、AB中點,沿EF將梯形AFED折起,使得∠AFB=60°,點G為FB的中點.
(1)求證:AG⊥平面BCEF
(2)求DG的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分別為AB、CD中點,分別沿DE、CE把△ADE與△BCE折起,使A、B重合于點P.

(1)求證:PE⊥CD;
(2)若點P在面CDE的射影恰好是點F,求EF的長.

查看答案和解析>>

同步練習冊答案