已知,則z=x+y-2的最大值是   
【答案】分析:本題考查的知識點是線性規(guī)劃,處理的思路為:根據(jù)已知的約束條件畫出滿足約束條件的可行域,再用角點法,求出目標函數(shù)的最大值.
解答:解:約束條件對應的平面區(qū)域如下圖示:

由圖可知當x=1,y=2時,目標函數(shù)Z有最大值
Zmax=1
故答案為:1
點評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數(shù)是關鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標函數(shù)的最優(yōu)解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(理)已知函數(shù)f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若滿足地f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
 

(文)在平面直角坐標系xOy中,設
OM
=(1,
1
2
)
,
ON
=(0,1)
,動點P(x,y)同時滿足
0≤
OP
OM
≤1
0≤
OP
ON
≤1
則z=x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(x,y)在不等式組
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面區(qū)域上運動,則z=x-y的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:湖南省期末題 題型:填空題

已知,則z=-x+y的最大值是(    )。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知,則z=x+y-2的最大值是         。

查看答案和解析>>

同步練習冊答案