思路分析:本題是一個(gè)混合型的復(fù)合函數(shù),若利用函數(shù)單調(diào)性來求極值,在證明函數(shù)的單調(diào)性時(shí)很困難,很明顯,用導(dǎo)數(shù)可使問題迎刃而解.
解:f′(x)=x,令x=0,
化簡為x2+x-2=0,解得x1=-2(舍去),x2=1.
當(dāng)0≤x<1時(shí),f′(x)>0,f(x)單調(diào)增加.
當(dāng)1<x≤2時(shí),f′(x)<0,f(x)單調(diào)減小.
所以f(1)=ln2-為函數(shù)的極大值.
又因?yàn)閒(0)=0,f(2)=ln3-1>0,f(2)>f(0),
所以f(0)=0為函數(shù)f(x)在[0,2]上的最小值,f(1)=ln2-為函數(shù)在[0,2]上的極大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com