【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.
(I)討論f(x)的單調(diào)性;
(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù))。
【答案】(1) 當 時,<0,單調(diào)遞減;當 時,>0,單調(diào)遞增;(2) .
【解析】
試題分析:本題考查導(dǎo)數(shù)的計算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導(dǎo),再對a進行討論,從而判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論.
試題解析:(Ⅰ)
<0,在內(nèi)單調(diào)遞減.
由=0,有.
此時,當 時,<0,單調(diào)遞減;
當 時,>0,單調(diào)遞增.
(Ⅱ)令=,=.
則=.
而當時,>0,
所以在區(qū)間內(nèi)單調(diào)遞增.
又由=0,有>0,
從而當時,>0.
當,時,=.
故當>在區(qū)間內(nèi)恒成立時,必有.
當時,>1.
由(Ⅰ)有,從而,
所以此時>在區(qū)間內(nèi)不恒成立.
當時,令,
當時,,
因此,在區(qū)間單調(diào)遞增.
又因為,所以當時,,即恒成立.
綜上,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是一個容量為20的樣本數(shù)據(jù)分組后的頻率分布表:
分組 | [8.5,11.5] | [11.5,14.5] | [14.5,17.5] | [17.5,20.5] |
頻數(shù) | 4 | 2 | 6 | 8 |
(I)若用組中值代替本組數(shù)據(jù)的平均數(shù),請計算樣本的平均數(shù);
(II)以頻率估計概率,若樣本的容量為2000,求在分組[14.5,17.5)中的頻數(shù);
(Ⅲ)若從數(shù)據(jù)在分組[8.5,11.5)與分組[11.5,14.5)的樣本中隨機抽取2個,求恰有1個樣本落在分組[11.5,14.5)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正數(shù)的兩個數(shù)列和{}滿足:an+1=,n∈N*.
(1)設(shè)bn+1=1+,n∈N*,求證:數(shù)列是等差數(shù)列;
(2)設(shè)bn+1=·,n∈N*,且是等比數(shù)列,求a1和b1的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中,底面ABC為等腰直角三角形,,,,M是側(cè)棱上一點,設(shè),用空間向量知識解答下列問題.
1若,證明:;
2若,求直線與平面ABM所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)恰有3個零點,則實數(shù)的取值范圍為( )
A. B. C. D.
【答案】A
【解析】,在上單調(diào)遞減.若,則在上遞增,那么零點個數(shù)至多有一個,不符合題意,故.故需當時,且,使得第一段有一個零點,故.對于第二段, ,故需在區(qū)間有兩個零點, ,故在上遞增,在上遞減,所以,解得.綜上所述,
【點睛】本小題主要考查函數(shù)的圖象與性質(zhì),考查含有參數(shù)的分段函數(shù)零點問題的求解策略,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,極值,最值等基本問題.其中用到了多種方法,首先對于第一段函數(shù)的分析利用了分離常數(shù)法,且直接看出函數(shù)的單調(diào)性.第二段函數(shù)利用的是導(dǎo)數(shù)來研究圖像與性質(zhì).
【題型】單選題
【結(jié)束】
13
【題目】設(shè), 滿足約束條件,則的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列
C.數(shù)列的最大項是D.數(shù)列的最大項是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 所示,一條直角走廊寬為,
(1)若位于水平地面上的一根鐵棒在此直角走廊內(nèi),且,試求鐵棒的長;
(2)若一根鐵棒能水平地通過此直角走廊,求此鐵棒的最大長度;
(3)現(xiàn)有一輛轉(zhuǎn)動靈活的平板車,其平板面是矩形,它的寬為如圖2.平板車若想順利通過直角走廊,其長度不能超過多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com