【題目】如圖,在各棱長為的直四棱柱中,底面為棱形, 為棱上一點(diǎn),且
(1)求證:平面平面;
(2)平面將四棱柱分成上、下兩部分,求這兩部分的體積之比.
(棱臺的體積公式為,其中分別為上、下底面面積, 為棱臺的高)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求在區(qū)間上的最大值;
(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個(gè)數(shù)的和都相等,我們規(guī)定:只要兩個(gè)幻方的對應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該定價(jià)按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(元) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4—5:不等式選講)
已知函數(shù).
(1)若不等式的解集為,求的值;
(2)若對,,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過左焦點(diǎn)且垂直于長軸的弦長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)為橢圓的長軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)都是正數(shù)的數(shù)列的前項(xiàng)和為,,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:,,數(shù)列的前項(xiàng)和,求證:;
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動(dòng)支付(又稱手機(jī)支付)越來越普通,某學(xué)校興趣小組為了了解移動(dòng)支付在大眾中的熟知度,對15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會(huì)使用移動(dòng)支付嗎?”其中,回答“會(huì)”的共有個(gè)人.把這個(gè)人按照年齡分成5組:第1組,第2組,第3組,第4組,第5組,然后繪制成如圖所示的頻率分布直方圖.其中,第一組的頻數(shù)為20.
(1)求 和的值,并根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的眾數(shù);
(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);
(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn),分別是,的中點(diǎn),將分別沿,折起,使兩點(diǎn)重合于.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com