已知函數(shù)f(x)=x2-4ax+2a+6(a∈R).
(1)若函數(shù)的值域為[0,+∞),求a的值;
(2)若函數(shù)值為非負數(shù),求函數(shù)f(a)=2-a|a+3|的值域.
分析:(1)二次函數(shù)的值域,可以結合二次函數(shù)的圖象去解答,這里二次函數(shù)圖象開口向上,△=0時,值域為[0,+∞)
(2)在(1)的結論下,化簡函數(shù)f(a),轉(zhuǎn)化為求二次函數(shù)在閉區(qū)間上的最值問題.
解答:解:(1)∵函數(shù)的值域為[0,+∞),即二次函數(shù)f(x)=x2-4ax+2a+6圖象不在x軸下方,
∴△=0,即16a2-4(2a+6)=0,∴2a2-a-3=0,
解得:a=-1或a=
3
2

(2)由(1)知,對一切x∈R函數(shù)值均為非負數(shù),
有△≤0,即-1≤a≤
3
2
;∴a+3>0,
∵f(a)=2-a|a+3|=-a2-3a+2=-(a+
3
2
)
2+
17
4
,其中  (a∈[-1,
3
2
])
;
∴二次函數(shù)f(a)在[-1,
3
2
]
上單調(diào)遞減.
∴f(
3
2
)
≤f(a)≤f(-1),即-
19
4
≤f(a)≤4,
∴f(a)的值域為[-
19
4
,4]
點評:本題屬于二次函數(shù)的值域問題,通常結合二次函數(shù)的圖象,容易解得問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案