【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(1)證明:平面PAB⊥平面PAD;
(2)求二面角P﹣AB﹣D的大小.
【答案】(1)證明見(jiàn)解析;(2) 45°.
【解析】
(1)通過(guò)證明AB⊥平面PAD得出面面垂直;
(2)建立空間直角坐標(biāo)系,利用法向量求二面角的大小.
證明:(1)∵四棱錐P﹣ABCD的底面是正方形,AB⊥AD,
PD⊥底面ABCD,平面ABCD,
∴AB⊥PD,又AD∩PD=D,∴AB⊥平面PAD,
∵AB平面PAB,∴平面PAB⊥平面PAD.
(2)由(1)AB⊥平面PAD,所以CD⊥平面PAD,以D為原點(diǎn),DA為x軸,DC為y軸,DP為z軸,建立空間直角坐標(biāo)系,
設(shè)PD=DC=DP=2,則A(2,0,0),P(0,0,2),D(0,0,0),B(2,2,0),
(﹣2,0,2),(0,2,0),
設(shè)平面PAB的法向量(x,y,z),
則,
取x=1,得(1,0,1),平面ABD的法向量(0,0,1),
設(shè)二面角P﹣AB﹣D的大小為θ,則cosθ,θ=45°,
∴二面角P﹣AB﹣D的大小為45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了50名男顧客和50名女顧客,每位顧客對(duì)該商場(chǎng)的服務(wù)給出滿(mǎn)意或不滿(mǎn)意的評(píng)價(jià),得到下面列聯(lián)表:
滿(mǎn)意 | 不滿(mǎn)意 | |
男顧客 | 40 | 10 |
女顧客 | 30 | 20 |
(1)分別估計(jì)男、女顧客對(duì)該商場(chǎng)服務(wù)滿(mǎn)意的概率;
(2)能否有95%的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?
附:.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),若不等式對(duì)任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)的頻率分布直方圖如圖所示.
(1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);
(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機(jī)抽取5個(gè),再?gòu)倪@5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來(lái)自同一個(gè)質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷(xiāo)商來(lái)收購(gòu)芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷(xiāo)商提出以下兩種收購(gòu)方案:
方案①:所有芒果以9元/千克收購(gòu);
方案②:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),對(duì)質(zhì)量高于或等于250克的芒果以3元/個(gè)收購(gòu).
通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),m∈R
(1)討論f(x)的單調(diào)性;
(2)若m∈(-1,0),證明:對(duì)任意的x1,x2∈[1,1-m],4f(x1)+x2<5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高三(2)班甲、乙兩名同學(xué)自高中以來(lái)每次考試成績(jī)的莖葉圖如圖,下列說(shuō)法正確的是( )
A.乙同學(xué)比甲同學(xué)發(fā)揮的穩(wěn)定,且平均成績(jī)也比甲同學(xué)高
B.乙同學(xué)比甲同學(xué)發(fā)揮的穩(wěn)定,但平均成績(jī)不如甲同學(xué)高
C.甲同學(xué)比乙同學(xué)發(fā)揮的穩(wěn)定,且平均成績(jī)也比乙同學(xué)高
D.甲同學(xué)比乙同學(xué)發(fā)揮的穩(wěn)定,但平均成績(jī)不如乙同學(xué)高
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的左、右兩個(gè)頂點(diǎn)分別是A1,A2,左、右兩個(gè)焦點(diǎn)分別是F1,F2,P是雙曲線(xiàn)上異于A1,A2的任意一點(diǎn),給出下列命題,其中是真命題的有( )
A.
B.直線(xiàn)的斜率之積等于定值
C.使得為等腰三角形的點(diǎn)有且僅有8個(gè)
D.的面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù),設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)任意均有 求的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于,兩點(diǎn),弦的中點(diǎn)的軌跡記為.
(1)求的方程;
(2)已知直線(xiàn)與相交于,兩點(diǎn).
(i)求的取值范圍;
(ii)軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com