【題目】如圖,是由兩個全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
【答案】(1)見解析;(2)
【解析】
(1)取的中點,連接、,.利用菱形的性質(zhì)、等邊三角形的性質(zhì)分別證得,,由此證得平面,進而求得,根據(jù)空間角的概念,證得.
(2)根據(jù)(1)得到就是二面角的平面角,即,由此求得的長.利用等體積法計算出到平面的距離,根據(jù)線面角的正弦值的計算公式,計算出直線與平面所成角的正弦值.
(1)取的中點,連接、,.在菱形中,
∵,∴是正三角形,∴,
同理在菱形,可證,∴平面,∴,
又∵,∴.
(2)由(1)知,就是二面角的平面角,即,
又,所以是正三角形,故有,
如圖,取的中點,連接,則,又由(1)得,
所以,平面,且,又,在直角中,,
所以,設到平面的距離為,則
,
,所以,
故直線與平面所成角正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.
(1)求證:AE⊥B1C;
(2)若G為C1C中點,求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】濱海市政府今年加大了招商引資的力度,吸引外資的數(shù)量明顯增加.一外商計劃在濱海市投資兩個項目,總投資20億元,其中甲項目的10年收益額(單位:億元)與投資額(單位:億元)滿足,乙項目的10年收益額(單位:億元)與投資額(單位:億元)滿足,并且每個項目至少要投資2億元.設兩個項目的10年收益額之和為.
(1)求;
(2)如何安排甲、乙兩個項目的投資額,才能使這兩個項目的10年收益額之和最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),定義f1(x)=f(x),fn+1(x)=f[fn(x)](n∈N*),已知偶函數(shù)g(x)的定義域為(﹣∞,0)∪(0,+∞),g(1)=0,當x>0且x≠1時,g(x)=f2018(x).
(1)求f2(x),f3(x),f4(x),f2018(x);
(2)求出函數(shù)y=g(x)的解析式;
(3)若存在實數(shù)a、b(a<b),使得函數(shù)g(x)在[a,b]上的值域為[mb,ma],求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓上一點A關于原點的對稱點為B,F(xiàn)為橢圓的右焦點,AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com