【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分數(shù)進行統(tǒng)計,發(fā)現(xiàn)分數(shù)都位于之間,現(xiàn)將所有分數(shù)情況分為、、、、、、共七組,其頻率分布直方圖如圖所示,已知.
(1)求頻率分布直方圖中、的值;
(2)求該班級這次月考語文作文分數(shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點值作為代表)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列結(jié)論中:
①若向量共線,則向量所在的直線平行;
②若向量所在的直線為異面直線,則向量一定不共面;
③若三個向量兩兩共面,則向量共面;
④已知空間的三個向量,則對于空間的任意一個向量總存在實數(shù)x,y,z使得.
其中正確結(jié)論的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),且的圖象的一個對稱中心到最近的對稱軸的距離為.
(1)求的值及單調(diào)遞減區(qū)間;
(2)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長潛伏者”.
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),并計算出這500名患者中“長潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標準進行分層抽樣,從上述500名患者中抽取300人,得到如下表格.
(i)請將表格補充完整;
短潛伏者 | 長潛伏者 | 合計 | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計 | 300 |
(ii)研究發(fā)現(xiàn),某藥物對新冠病毒有一定的抑制作用,現(xiàn)需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗,再從選取的7人中隨機抽取兩人做Ⅱ期臨床試驗,求兩人中恰有1人為“長潛伏者”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[-1,1]時,f(x)=x2.令g(x)=f(x)-kx-k,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=0有4個不相等實根,則實數(shù)k的取值范圍是( )
A.(0,+∞)B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有( )
A.將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;
B.設(shè)有一個線性回歸方程,變量增加1個單位時,平均增加5個單位;
C.設(shè)具有相關(guān)關(guān)系的兩個變量,的相關(guān)系數(shù)為,則越接近于0,和之間的線性相關(guān)程度越弱;
D.在一個列聯(lián)表中,由計算得的值,在的前提下,的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為2正方體中,點E在棱CD上.
(1)求證:;
(2)若E是CD中點,求與平面所成的角的正弦值;
(3)設(shè)M在棱上,且,是否存在點E,使平面⊥平面,若存在,指出點E的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一批產(chǎn)品共10件,其中3件是不合格品,用下列兩種不同方式從中隨機抽取2件產(chǎn)品檢驗:
方法一:一次性隨機抽取2件;
方法二:先隨機抽取1件,放回后再隨機抽取1件.
記方法一抽取的不合格產(chǎn)品數(shù)為.記方法二抽取的不合格產(chǎn)品數(shù)為.
(1)求兩種抽取方式下,的概率分布列;
(2)比較兩種抽取方式抽到的不合格品平均數(shù)的大?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖如示的多面體中,平面平面,四邊形是邊長為的正方形, ∥,且.
(1)若分別是中點,求證: ∥平面
(2)求此多面體的體積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com