【題目】以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為α為參數(shù)).設(shè)曲線(xiàn)x軸、y軸的交點(diǎn)分別為A,B,線(xiàn)段的中點(diǎn)為M,射線(xiàn)與曲線(xiàn)交于點(diǎn)N.

1)求曲線(xiàn)的普通方程與曲線(xiàn)的極坐標(biāo)方程;

2)求.

【答案】1;(2.

【解析】

1)首先利用兩角和的正弦公式展開(kāi),再根據(jù)公式,化為曲線(xiàn)的普通方程,首先將曲線(xiàn) 化為普通方程,再化簡(jiǎn)為極坐標(biāo)方程;(2)首先求得射線(xiàn)的極坐標(biāo)方程,以及,再聯(lián)立射線(xiàn)和曲線(xiàn)的極坐標(biāo)方程,得到,根據(jù)計(jì)算求值.

1)∵曲線(xiàn)的極坐標(biāo)方程為

,即

,

∴曲線(xiàn)的普通方程為.

又曲線(xiàn)的參數(shù)方程為α為參數(shù)),

消去參數(shù)α,得,即

,整理得,

∴曲線(xiàn)的極坐標(biāo)方程為.

2)由(1)得,,

∴線(xiàn)段的中點(diǎn)M的坐標(biāo)為,

∴射線(xiàn)的極坐標(biāo)方程為,且.

代入曲線(xiàn)的極坐標(biāo)方程得,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),數(shù)列滿(mǎn)足,,則(

A.,則B.,則

C.,則D.,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅原理指出:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等,例如在計(jì)算球的體積時(shí),構(gòu)造一個(gè)底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個(gè)平行于底面的平面去截它們時(shí),可證得所截得的兩個(gè)截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類(lèi)比上述方法,運(yùn)用祖暅原理可求得其體積等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年,新型冠狀病毒引發(fā)的疫情牽動(dòng)著億萬(wàn)人的心,八方馳援戰(zhàn)疫情,眾志成城克時(shí)難,社會(huì)各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫(yī)院派出3名醫(yī)生,2名護(hù)士支援湖北,現(xiàn)從這5人中任選2人定點(diǎn)支援湖北某醫(yī)院,則恰有1名醫(yī)生和1名護(hù)士被選中的概率為(

A.0.7B.0.4C.0.6D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)經(jīng)濟(jì)高速發(fā)展,人民的生活水平越來(lái)越高,部分學(xué)校安裝了中央空調(diào),某校數(shù)學(xué)建模隊(duì)調(diào)查了某品牌中央空調(diào),得到該設(shè)備使用年限x(單位:年)和維修總費(fèi)用y(單位:萬(wàn)元)的統(tǒng)計(jì)表如下:(每年年底維修保養(yǎng))

使用年限x(單位:年)

2

3

4

5

6

維修總費(fèi)用y(單位:萬(wàn)元)

1

3

4

由上表可得線(xiàn)性回歸方程,則根據(jù)此模型預(yù)報(bào)該品牌中央空調(diào)第8年年底的維修費(fèi)用約為(

A.萬(wàn)元B.萬(wàn)元C.萬(wàn)元D.萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】CPI是居民消費(fèi)價(jià)格指數(shù)的簡(jiǎn)稱(chēng),是一個(gè)反映居民家庭一般所購(gòu)買(mǎi)的消費(fèi)品和服務(wù)項(xiàng)目?jī)r(jià)格水平變動(dòng)情況的宏觀經(jīng)濟(jì)指標(biāo).同比一般情況下是今年第n月與去年第n月比;環(huán)比,表示連續(xù)2個(gè)統(tǒng)計(jì)周期(比如連續(xù)兩月)內(nèi)的量的變化比.如圖是根據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的20194—20204月我國(guó)CPI漲跌幅數(shù)據(jù)繪制的折線(xiàn)圖,根據(jù)該折線(xiàn)圖,則下列說(shuō)法正確的是(

A.20201CPI同比漲幅最大

B.20194月與同年12月相比較,4CPI環(huán)比更大

C.20197月至12月,CPI一直增長(zhǎng)

D.20201月至4CPI只跌不漲

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (a>b>0)的左右焦點(diǎn)分別為F1F2點(diǎn).M為橢圓上的一動(dòng)點(diǎn),△MF1F2面積的最大值為4.過(guò)點(diǎn)F2的直線(xiàn)l被橢圓截得的線(xiàn)段為PQ,當(dāng)lx軸時(shí),.

1)求橢圓C的方程;

2)過(guò)點(diǎn)F1作與x軸不重合的直線(xiàn)l,l與橢圓交于AB兩點(diǎn),點(diǎn)A在直線(xiàn)上的投影N與點(diǎn)B的連線(xiàn)交x軸于D點(diǎn),D點(diǎn)的橫坐標(biāo)x0是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.

(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;

(Ⅱ)若直線(xiàn)與曲線(xiàn)相交于, 兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為的橢圓的左頂點(diǎn)為,左焦點(diǎn)為,及點(diǎn),且、、成等比數(shù)列.

1)求橢圓的方程;

2)斜率不為的動(dòng)直線(xiàn)過(guò)點(diǎn)且與橢圓相交于、兩點(diǎn),記,線(xiàn)段上的點(diǎn)滿(mǎn)足,試求為坐標(biāo)原點(diǎn))面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案