【題目】已知從A地到B地共有兩條路徑L1和L2 , 據(jù)統(tǒng)計,經(jīng)過兩條路徑所用的時間互不影響,且經(jīng)過L1與L2所用時間落在各時間段內(nèi)的頻率分布直方圖分別如圖(1)和圖(2).
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于從A地到B地.
(1)為了盡最大可能在各自允許的時間內(nèi)趕到B地,甲和乙應(yīng)如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到B地的人數(shù),針對(1)的選擇方案,求X的分布列和數(shù)學(xué)期望.

【答案】
(1)解:用Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到B地”,

Bi表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到B地”,i=1,2.

由頻率分布直方圖及頻率估計相應(yīng)的概率可得:

P(A1)=(0.01+0.02+0.03)×10=0.6,

P(A2)=(0.01+0.04)×10=0.5.

∵P(A1)>P(A2),故甲應(yīng)選擇L1

P(B1)=(0.01+0.02+0.03+0.02)×10=0.8,

P(B2)=(0.01+0.04+0.04)×10=0.9.

∵P(B2)>P(B1),故乙應(yīng)選擇L2


(2)解:用M,N分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到B地,

由(1)知P(M)=0.6,P(N)=0.9,又由題意知,M,N相互獨立,

∴P(X=0)=P( )=P( )P( )=0.4×0.1=0.04;

P(X=1)=P( N+M )=P( )P(N)+P(M)P(

=0.4×0.9+0.6×0.1=0.42;

P(X=2)=P(MN)=P(M)P(N)=0.6×0.9=0.54.

∴X的分布列為

X

0

1

2

P

0.04

0.42

0.54

∴E(X)=0×0.04+1×0.42+2×0.54=1.5.


【解析】(1)用Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到B地”,Bi表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到B地”,i=1,2.由頻率分布直方圖及頻率估計概率求出P(A1)>P(A2),從而甲應(yīng)選擇L1,P(B2)>P(B1),從而乙應(yīng)選擇L2.(2)用M,N分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到B地,P(M)=0.6,P(N)=0.9,M,N相互獨立,由題意X的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
【考點精析】本題主要考查了頻率分布直方圖和離散型隨機(jī)變量及其分布列的相關(guān)知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,取相同的長度單位,已知曲線C的極坐標(biāo)方程為ρ=2 sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程.
(Ⅱ)若P(3, ),直線l與曲線C相交于M,N兩點,求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(I)若∠DAC=30°,求角B的大;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點為F(2,0),M為橢圓的上頂點,O為坐標(biāo)原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)的圖象關(guān)于x= 對稱,則函數(shù)y=f( ﹣x)是(
A.偶函數(shù)且它的圖象關(guān)于點(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點 對稱
C.奇函數(shù)且它的圖象關(guān)于點 對稱
D.奇函數(shù)且它的圖象關(guān)于點(π,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)).以坐標(biāo)原點為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程;
(2)設(shè)點M的極坐標(biāo)為( ),過點M的直線l與曲線C相交于A,B兩點,若|MA|=2|MB|,求AB的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinx( ).
(1)求函數(shù)f(x)在( )上的值域;
(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考拉茲猜想又名3n+1猜想,是指對于每一個正整數(shù),如果它是奇數(shù),則對它乘3再加1;如果它是偶數(shù),則對它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果i=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題:
⑴“ ”是“曲線 表示橢圓”的充要條件
⑵命題“若 ,則 ”的否命題為:“若 ,則
中, . 是斜邊 上的點, .以 為起點任作一條射線 點,則 點落在線段 上的概率是
⑷設(shè)隨機(jī)變量 服從正態(tài)分布 ,若 ,則
則正確命題有( )個
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案