已知數(shù)列{
an}的通項公式是
an=
,若前
n項和為10,則項數(shù)
n為( ).
∵
an=
=
-
,
∴
Sn=
a1+
a2+…+
an=(
-1)+(
-
)+…+(
-
)=
-1.
令
-1=10,得
n=120.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列{
an}的前
n項和為
Sn,已知
a1=1,
=
an+1-
n2-
n-
,
n∈N
*.
(1)求
a2的值;
(2)求數(shù)列{
an}的通項公式;
(3)證明:對一切正整數(shù)
n,有
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
對于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“差數(shù)列”,若a1=2,{an}的“差數(shù)列”的通項為2n,則數(shù)列{an}的前n項和Sn=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列{an}的前n項和Sn=n2-7n,且滿足16<ak+ak+1<22,則正整數(shù)k=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知無窮數(shù)列{an}的各項均為正整數(shù),Sn為數(shù)列{an}的前n項和.
(1)若數(shù)列{an}是等差數(shù)列,且對任意正整數(shù)n都有Sn3=(Sn)3成立,求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)n,從集合{a1,a2,…,an}中不重復(fù)地任取若干個數(shù),這些數(shù)之間經(jīng)過加減運算后所得數(shù)的絕對值為互不相同的正整數(shù),且這些正整數(shù)與a1,a2,…,an一起恰好是1至Sn全體正整數(shù)組成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè){
an}是公差不為0的等差數(shù)列,
a1=2且
a1,
a3,
a6成等比數(shù)列,則{
an} 的前
n項和
Sn=( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在等差數(shù)列{
an}中,若
a2+
a3=4,
a4+
a5=6,則
a9+
a10等于( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{an}的通項公式為an=3n-1,在等差數(shù)列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比數(shù)列.
(1)求數(shù)列{bn}的通項公式;
(2)求數(shù)列{an·bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在等差數(shù)列{
an}中,
a1+
a5=10,
a4=7,則數(shù)列{
an}的公差為( )
查看答案和解析>>