已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0),在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(I)求證:|q|>1;
(II)若a=1,n=1,求d的值.
(1)由題意知qn+2=
c
a
,c=a+2d,
又a>0,d>0,可得qn+2=
c
a
=1+
2d
a
>1
即|qn+2|>1,故|q|n+2>1,又n+2是正數(shù),故|q|>1.
(2)由a,b,c是首項(xiàng)為1、公差為d的等差數(shù)列,故b=1+d,c=1+2d,
若插入的這一個(gè)數(shù)位于a,b之間,則1+d=q2,1+2d=q3,
消去q可得(1+2d)2=(1+d)3,即d3-d2-d=0,其正根為d=
1+
5
2

若插入的這一個(gè)數(shù)位于b,c之間,則1+d=q,1+2d=q3,
消去q可得1+2d=(1+d)3,即d3+3d2+d=0,此方程無正根.
故所求公差d=
1+
5
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較s與t的大小,并求插入的n個(gè)數(shù)的乘積(用a,c,n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•蚌埠二模)已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0),在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(I)求證:|q|>1;
(II)若a=1,n=1,求d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市盧灣區(qū)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較s與t的大小,并求插入的n個(gè)數(shù)的乘積(用a,c,n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市盧灣區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較s與t的大小,并求插入的n個(gè)數(shù)的乘積(用a,c,n表示).

查看答案和解析>>

同步練習(xí)冊答案