【題目】一家商場銷售一種商品,該商品一天的需求量在范圍內(nèi)等可能取值,該商品的進貨量也在范圍內(nèi)取值(每天進貨1次).這家商場每銷售一件該商品可獲利60元;若供不應(yīng)求,可從其他商店調(diào)撥,銷售一件該商品可獲利40元;若供大于求,剩余的每處理一件該商品虧損20元.設(shè)該商品每天的需求量為,每天的進貨量為件,該商場銷售該商品的日利潤為元.
(1)寫出這家商場銷售該商品的日利潤為關(guān)于需求量的函數(shù)表達式;
(2)寫出供大于求,銷售件商品時,日利潤的分布列;
(3)當進貨量多大時,該商場銷售該商品的日利潤的期望值最大?并求出日利潤的期望值的最大值.
【答案】(1);(2)分布列見解析;(3)或,
【解析】
(1)根據(jù)題意,該商品每天的需求量為,進貨量為,分段求出和時,利潤為關(guān)于需求量的函數(shù)表達式;
(2)當供大于應(yīng)求時,每種情況的概率都為,即可求出日利潤為的分布列;
(3)分別求出日利潤,得出的分布列,即可求出日利潤的數(shù)學期望,根據(jù)二次函數(shù)的性質(zhì),可知或是日利潤的期望值最大,即可求出期望值的最大值.
解:(1)因為該商品每天的需求量為,進貨量為,
該量販銷售該商品的日利潤為關(guān)于需求量的函數(shù)表達式為:
,
化簡得:,
(2)供大于應(yīng)求時,日利潤為的分布列:
|
|
|
|
| |
|
|
| . |
| . |
(3)日利潤為的分布列:
|
| |
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
的數(shù)學期望為:
,
當數(shù)學期望值最大,
但為自然數(shù),經(jīng)驗證或,.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的離心率,以上頂點和右焦點為直徑端點的圓與直線相切.
(1)求橢圓的標準方程.
(2)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同的交點,時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】謝爾賓斯基三角形(Sierpinskitriangle)是由波蘭數(shù)學家謝爾賓斯基在1915年提出的,如圖先作一個三角形,挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色三角形代表挖去的面積,那么灰色三角形為剩下的面積(我們稱灰色部分為謝爾賓斯基三角形).若通過該種方法把一個三角形挖3次,然后在原三角形內(nèi)部隨機取一點,則該點取自謝爾賓斯基三角形的概率為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(為自然對數(shù)的底數(shù)),時,若方程有兩個不等實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校在高一部分學生中調(diào)查男女同學對某項體育運動的喜好情況,其二維條形圖如圖(黑色代表喜好,白色代表不喜好).
(1)寫出列聯(lián)表;
(2)能否有99%的把握認為喜好這項體育運動與性別有關(guān);
(3)在這次調(diào)查中從喜好這項體育活動的一名男生和兩名女生中任選兩人進行專業(yè)培訓(xùn),求恰是一男一女的概率.
附:
0.25 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.
(1)求橢圓的標準方程;
(2)若為等腰三角形,求點的坐標;
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,,,為的中點,為中點.將沿折起到,使得平面平面(如圖2).
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)在線段上是否存在點,使得平面? 若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年12月16日,公安部聯(lián)合阿里巴巴推出的“錢盾反詐機器人”正式上線,當普通民眾接到電信網(wǎng)絡(luò)詐騙電話,公安部錢盾反詐預(yù)警系統(tǒng)預(yù)警到這一信息后,錢盾反詐機器人即自動撥打潛在受害人的電話予以提醒,來電信息顯示為“公安反詐專號”.某法制自媒體通過自媒體調(diào)查民眾對這一信息的了解程度,從5000多參與調(diào)查者中隨機抽取200個樣本進行統(tǒng)計,得到如下數(shù)據(jù):男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40人.
(1)完成下列列聯(lián)表,問:能否在犯錯誤的概率不超過0.01的前提下,認為200個參與調(diào)查者是否了解這一信息與性別有關(guān)?
了解 | 不了解 | 合計 | |
男性 | |||
女性 | |||
合計 |
(2)該自媒體對200個樣本中了解這一信息的調(diào)查者按照性別分組,用分層抽樣的方法抽取6人,再從這6人中隨機抽取3人給予一等獎,另外3人給予二等獎,求一等獎與二等獎獲得者都有女性的概率.
附:
P(K2≥k) | 0.01 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com