6.如圖是一個(gè)實(shí)物圖形,則它的側(cè)視圖大致是(  )
A.B.C.D.

分析 由實(shí)物圖形及其側(cè)視圖的第一即可得出.

解答 解:由實(shí)物圖形,則它的側(cè)視圖大致是正方形(或矩形)及其一條對(duì)角線.
故選:D.

點(diǎn)評(píng) 本題考查了三視圖的定義及其性質(zhì),考查了數(shù)形結(jié)合方法\推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{6}}}{3}$,過點(diǎn)$M(-\sqrt{6},-1)$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)G,H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH,試問:是否存在以原點(diǎn)O為圓心的定圓始終與直線GH相切?若存在,請求出該定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ=1.直線l與曲線C交于A,B兩點(diǎn).
(I)求|AB|的長;
(II)若P點(diǎn)的極坐標(biāo)為$({1,\frac{π}{2}})$,求AB中點(diǎn)M到P的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x∈N|-2<x<3},則集合A中的元素是( 。
A.-2,-1,0,1,2,3B.0,1,2,3C.0,1,2D.1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以下命題正確的是( 。
①冪函數(shù)的圖象都經(jīng)過(0,0)
②冪函數(shù)的圖象不可能出現(xiàn)在第四象限
③當(dāng)n=0時(shí),函數(shù)y=xn的圖象是兩條射線
④若y=xn(n<0)是奇函數(shù),則y=xn在定義域內(nèi)為減函數(shù).
A.①②B.②④C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)={log_5}({6^x}+1)$的值域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\sqrt{x-1}$
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)在定義域上的單調(diào)性,并用單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖是一個(gè)纜車示意圖,該纜車的半徑為4.8m,圓上最低點(diǎn)與地面的距離為0.8m,纜車每60s轉(zhuǎn)動(dòng)一圈,圖中OA與地面垂直,以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)動(dòng)θ角到OB,設(shè)B點(diǎn)與地面的距離為hm.
(1)求h與θ之間的函數(shù)解析式;
(2)設(shè)從OA開始轉(zhuǎn)動(dòng),經(jīng)過ts達(dá)到OB,求h與之間的函數(shù)解析式,并計(jì)算經(jīng)過45s后纜車距離地面的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某中學(xué)選取20名優(yōu)秀同學(xué)參加2016年數(shù)學(xué)應(yīng)用知識(shí)競賽,將他們的成績(百分制,均為整數(shù))分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],共6組后,得到頻率分布直方圖(如圖),根據(jù)圖中的信息,回答下列問題.
(1)從頻率分布直方圖中,估計(jì)本次考試的高分率(大于等于80分視為高分);
(2)若從成績在[70,90)的學(xué)生中隨機(jī)抽取2人,求抽到的學(xué)生成績?nèi)吭赱80,90)的概率.

查看答案和解析>>

同步練習(xí)冊答案