已知函數(shù)f(x)=
mxx2+n
(m,n∈R)
在x=1處取得極值2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)f(x)在區(qū)間(t,2t+1)上是單調(diào)函數(shù),求實(shí)數(shù)t的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意的x1∈R,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實(shí)數(shù)a的取值范圍.
分析:(I)先由已知函數(shù)求其導(dǎo)數(shù),再根據(jù)函數(shù)f(x)在x=1處取得極值2,列出關(guān)于a,b的方程即可求得函數(shù)f(x)的解析式;
(II)求f′(x),令f′(x)>0,令f′(x)<0,求出函數(shù)的單調(diào)區(qū)間,再由函數(shù)f(x)在區(qū)間(t,2t+1)上是單調(diào)函數(shù),能夠求出實(shí)數(shù)t的取值范圍.
(Ⅲ)求得函數(shù)f(x)的極小值,且當(dāng)x>1時(shí),f(x)>0恒成立,得函數(shù)f(x)的最小值,利用二次函數(shù)的圖象,對(duì)a進(jìn)行分類討論,得出g(x)在[-1,1]上的最大值,由g(x)在[-1,1]上的最大值小于等于-2得a的范圍,結(jié)合分類時(shí)a的范圍得a的取值范圍.
解答:解:(I)f′(x)=
m(x2+n)-mx•2x
(x2+n)2
=
-m(x2-n)
(x2+n)2
,
由題意得
f(1)=
-m(1-n)
(1+n)2
=0
f(1)=
m
1+n
=2
,解得
m=4
n=1
,
∴f(x)=
4x
x2+1

(II)f′(x)=
-4(x2-1)
(x2+1)2
,令f'(x)=0,得x=-1或x=1
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
x (-∞,-1) -1 (-1,1) 1 (1,+∞)
f'(x) - 0 + 0 -
f(x) 單調(diào)遞減 極小值 單調(diào)遞增 極大值 單調(diào)遞減
∴f(x)的減區(qū)是(-∞,-1),(1,+∞);增區(qū)間是(-1,1).
∵函數(shù)f(x)在區(qū)間(t,2t+1)上是單調(diào)函數(shù),
t<-1
2t+1≤-1
t<2t+1
,或-1≤t<2t+1≤1,或
t≥1
2t+1>1
t<2t+1
,
解得-1<t≤0或t>1.
故實(shí)數(shù)t的取值范圍是(-1,0]∪(1,+∞).
(Ⅲ)由(Ⅱ)知f(x)在x=-1處取得極小值f(-1)=-2,
在x=1處取得極大值f(1)=2
又∵x>0時(shí),f(x)>0,
∴f(x)的最小值為-2,(10分)
∵對(duì)于任意的x1∈R,總存在x2∈[-1,1],使得g(x2)≤f(x1
∴當(dāng)x∈[-1,1]時(shí),g(x)最小值不大于-2,
又g(x)=x2-2ax+a=(x-a)2+a-a2
當(dāng)a≤-1時(shí),g(x)的最小值為g(-1)=1+3a,
由1+3a≤-2,得a≤-1,(11分)
當(dāng)a≥1時(shí),g(x)最小值為g(1)=1-a,由1-a≤-2,得a≥3
當(dāng)-1<a<1時(shí),g(x)的最小值為g(a)=a-a2
由a-a2≤-2,得a≤-1或a≥2,又-1<a<1,
所以此時(shí)a不存在.(12分)
綜上,a的取值范圍是(-∞,-1]∪[3,+∞).(13分).
點(diǎn)評(píng):本題考查函數(shù)的解析式的求法,考查滿足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想和分類討論思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m-
22x+1
是R上的奇函數(shù),
(1)求m的值;
(2)先判斷f(x)的單調(diào)性,再證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湘潭三模)已知函數(shù)f(x)=(m+
1
m
)lnx+
1
x
-x
,(其中常數(shù)m>0)
(1)當(dāng)m=2時(shí),求f(x)的極大值;
(2)試討論f(x)在區(qū)間(0,1)上的單調(diào)性;
(3)當(dāng)m∈[3,+∞)時(shí),曲線y=f(x)上總存在相異兩點(diǎn)P(x1,f(x1))、Q(x2,f(x2)),使得曲線y=f(x)在點(diǎn)P、Q處的切線互相平行,求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m-
1
1+ax
(a>0且a≠1,m∈R)
是奇函數(shù).
(1)求m的值.
(2)當(dāng)a=2時(shí),解不等式0<f(x2-x-2)<
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
m•3x-1
3x+1
是定義在實(shí)數(shù)集R上的奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若x滿足不等式4x+
1
2
-5•2x+1+8≤0
,求此時(shí)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m(sinx+cosx)4+
1
2
cos4x
x∈[0,
π
2
]
時(shí)有最大值為
7
2
,則實(shí)數(shù)m的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案