【題目】已知全集U=R,集合A={x|1<2x﹣1<5},B={y|y=( )x , x≥﹣2}.
(1)求(UA)∩B;
(2)若集合C={x|a﹣1<x﹣a<1},且CA,求實數(shù)a的取值范圍.
【答案】
(1)解:由集合A={x|1<2x﹣1<5}={x|1<x<3},
∴CUA={x|x≤1,或x≥3}
∵B={y|y=( )x,x≥﹣2}={y|0<y≤4}
∴(CUA)∩B={x|0<x≤1,或3≤x≤4}
(2)解:C={x|a﹣1<x﹣a<1}={x|2a﹣1<x<a+1},
當(dāng)2a﹣1≥a+1時,即a≥2時,C=,滿足CA,
當(dāng)a<2時,由題意 ,解得1≤a<2,
綜上,實數(shù)a的取值范圍是[1,+∞)
【解析】(1)先化簡A,B,根據(jù)集合的交補(bǔ)即可求出答案.(2)要分C等于空集和不等于空集兩種情況.再根據(jù)CA求出a的取值范圍.
【考點精析】本題主要考查了交、并、補(bǔ)集的混合運算的相關(guān)知識點,需要掌握求集合的并、交、補(bǔ)是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體ABCD及其三視圖如圖1,2所示.
(1)求四面體ABCD的體積;
(2)若點E為棱BC的中點,求異面直線DE和AB所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A={x|3≤x≤7},B={x|2a<x<a+4}.
(1)當(dāng)a=1時,求A∩B和A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 =1(a>b>0)上一點A關(guān)于原點的對稱點為B,F(xiàn)為其右焦點,若AF⊥BF,設(shè)∠ABF=α,且α∈[ , ],則該橢圓離心率的最大值為( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=sin(2x+ )的圖象可以由函數(shù)y=sin2x的圖象( )得到.
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】歐陽修《賣油翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢入孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止,若銅錢是直徑為2cm的圓,中間有邊長為0.5cm的正方形孔,若你隨機(jī)向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},則M∩N=( )
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x﹣3)2+(y﹣4)2=1.
(Ⅰ)若過點C1(﹣1,0)的直線l被圓C2截得的弦長為 ,求直線l的方程;
(Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動的動圓,若圓D上任意一點P分別作圓C1的兩條切線PE,PF,切點為E,F(xiàn),求 的取值范圍;
(Ⅲ)若動圓C同時平分圓C1的周長、圓C2的周長,則動圓C是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com