【題目】已知函數(shù)f(x)=|2x﹣1|﹣3|x+1|,設(shè)f(x)的最大值為M.
(1)求M;
(2)若正數(shù)a,b滿足Mab,證明:a4b+ab4.
【答案】(1)M=3(2)證明見解析;
【解析】
(1)由f(x)=|2x﹣1|﹣3|x+1|=|2x﹣1|﹣|2x+2|﹣|x+1|,結(jié)合絕對值不等式的性質(zhì)和絕對值的幾何意義,可得所求最大值;
(2)由(1)可得3ab,a4b+ab4=ab(a3+b3)()(a3+b3),再由基本不等式即可得證.
解:(1)函數(shù)f(x)=|2x﹣1|﹣3|x+1|
=|2x﹣1|﹣|2x+2|﹣|x+1|≤|2x﹣1﹣2x﹣2|﹣|﹣1+1|=3,
當(dāng)x=﹣1時,f(x)取得最大值3,即M=3;
(2)證明:正數(shù)a,b滿足3ab,
故a4b+ab4=ab(a3+b3)()(a3+b3)(1+1)
(2+2),當(dāng)且僅當(dāng)a=b時等號成立,
故a4b+ab4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面向量,共線的充要條件是( )
A.
B.,兩向量中至少有一個為零向量
C.λ∈R,
D.存在不全為零的實數(shù)λ1,λ2,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年情況特殊,小王在居家自我隔離時對周邊的水產(chǎn)養(yǎng)殖產(chǎn)業(yè)進行了研究.、兩個投資項目的利潤率分別為投資變量和.根據(jù)市場分析,和的分布列分別為:
5% | 10% | |||
0.8 | 0.2 | |||
2% | 8% | 12% | ||
0.2 | 0.5 | 0.3 | ||
(1)若在兩個項目上各投資萬元,和分別表示投資項目和所獲得的利潤,求方差,;
(2)若在兩個項目上共投資萬元,那么如何分配,能使投資項目所得利潤的方差與投資項目所得利潤的方差的和最小,最小值是多少?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某項數(shù)學(xué)競賽考試共四道題,考察內(nèi)容分別為代數(shù)、幾何、數(shù)論、組合,已知前兩題每題滿分40分,后兩題每題滿分60分,題目難度隨題號依次遞增,已知學(xué)生甲答題時,若該題會做則必得滿分,若該題不會做則不作答得0分,通過對學(xué)生甲以往測試情況的統(tǒng)計,得到他在同類模擬考試中各題的得分率,如表所示:
假設(shè)學(xué)生甲每次考試各題的得分相互獨立.
(1)若此項競賽考試四道題的順序依次為代數(shù)、幾何、數(shù)論、組合,試預(yù)測學(xué)生甲考試得160分的概率;
(2)學(xué)生甲研究該項競賽近五年的試題發(fā)現(xiàn)第1題都是代數(shù)題,于是他在賽前針對代數(shù)版塊進行了強化訓(xùn)練,并取得了很大進步,現(xiàn)在,只要代數(shù)題是在試卷第1、2題的位置,他就一定能答對,若今年該項數(shù)學(xué)競賽考試四道題的順序依次為代數(shù)、數(shù)論、組合、幾何,試求學(xué)生甲此次考試得分X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請從下面三個條件中任選一個,補充在下面的橫線上,并解答.
①
②
③的面積為
在中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b-c=2,cosA=, .
(1)求a;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,分別為,的中點是由繞直線旋轉(zhuǎn)得到,連結(jié),,.
(1)證明:平面;
(2)若,棱上是否存在一點,使得?若存在,確定點 的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意,給定區(qū)間,設(shè)函數(shù)表示實數(shù)與所屬的給定區(qū)間內(nèi)唯一整數(shù)之差的絕對值.
(1)當(dāng)時,求出的解析式;時,寫出絕對值符號表示的解析式;
(2)求,,判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(3)當(dāng)時,求方程的實根.(要求說明理由,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時,我們說體重較重,當(dāng)數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.
(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數(shù)有影響.
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻值)(保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請在小明所算的基礎(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com