【題目】已知函數(shù)fx)=|2x1|3|x+1|,設(shè)fx)的最大值為M.

1)求M

2)若正數(shù)a,b滿足Mab,證明:a4b+ab4.

【答案】1M32)證明見解析;

【解析】

1)由fx)=|2x1|3|x+1||2x1||2x+2||x+1|,結(jié)合絕對值不等式的性質(zhì)和絕對值的幾何意義,可得所求最大值;

2)由(1)可得3ab,a4b+ab4aba3+b3)(a3+b3),再由基本不等式即可得證.

解:(1)函數(shù)fx)=|2x1|3|x+1|

|2x1||2x+2||x+1||2x12x2||1+1|3,

當(dāng)x=﹣1時,fx)取得最大值3,即M3;

2)證明:正數(shù)ab滿足3ab,

a4b+ab4aba3+b3)(a3+b31+1

2+2,當(dāng)且僅當(dāng)ab時等號成立,

a4b+ab4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面向量,共線的充要條件是(

A.

B.兩向量中至少有一個為零向量

C.λR,

D.存在不全為零的實數(shù)λ1,λ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年情況特殊,小王在居家自我隔離時對周邊的水產(chǎn)養(yǎng)殖產(chǎn)業(yè)進行了研究.、兩個投資項目的利潤率分別為投資變量.根據(jù)市場分析,的分布列分別為:

5%

10%

0.8

0.2

2%

8%

12%

0.2

0.5

0.3

1)若在兩個項目上各投資萬元,分別表示投資項目所獲得的利潤,求方差,;

2)若在兩個項目上共投資萬元,那么如何分配,能使投資項目所得利潤的方差與投資項目所得利潤的方差的和最小,最小值是多少?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某項數(shù)學(xué)競賽考試共四道題,考察內(nèi)容分別為代數(shù)、幾何、數(shù)論、組合,已知前兩題每題滿分40分,后兩題每題滿分60分,題目難度隨題號依次遞增,已知學(xué)生甲答題時,若該題會做則必得滿分,若該題不會做則不作答得0分,通過對學(xué)生甲以往測試情況的統(tǒng)計,得到他在同類模擬考試中各題的得分率,如表所示:

假設(shè)學(xué)生甲每次考試各題的得分相互獨立.

1)若此項競賽考試四道題的順序依次為代數(shù)、幾何、數(shù)論、組合,試預(yù)測學(xué)生甲考試得160分的概率;

2)學(xué)生甲研究該項競賽近五年的試題發(fā)現(xiàn)第1題都是代數(shù)題,于是他在賽前針對代數(shù)版塊進行了強化訓(xùn)練,并取得了很大進步,現(xiàn)在,只要代數(shù)題是在試卷第1、2題的位置,他就一定能答對,若今年該項數(shù)學(xué)競賽考試四道題的順序依次為代數(shù)、數(shù)論、組合、幾何,試求學(xué)生甲此次考試得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請從下面三個條件中任選一個,補充在下面的橫線上,并解答.

的面積為

中,內(nèi)角AB,C所對的邊分別為ab,c,已知bc=2,cosA=,

1)求a;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,分別為,的中點是由繞直線旋轉(zhuǎn)得到,連結(jié),.

1)證明:平面;

2)若,棱上是否存在一點,使得?若存在,確定點 的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意,給定區(qū)間,設(shè)函數(shù)表示實數(shù)所屬的給定區(qū)間內(nèi)唯一整數(shù)之差的絕對值.

1)當(dāng)時,求出的解析式;時,寫出絕對值符號表示的解析式;

2)求,,判斷函數(shù)的奇偶性,并證明你的結(jié)論;

3)當(dāng)時,求方程的實根.(要求說明理由,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時,我們說體重較重,當(dāng)數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數(shù)有影響.

身高較矮

身高較高

合計

體重較輕

體重較重

合計

(Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻值)(保留兩位有效數(shù)字);

編號

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請在小明所算的基礎(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.

參考數(shù)據(jù):

,,,

參考公式:,,,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

同步練習(xí)冊答案