(2010•河西區(qū)二模)若實數(shù)a、b、c滿足a2+a+bi<2+ci(其中i2=-1),集合A={x|x=a},B={x|x=b+c},則A∩?RB為( 。
分析:首先根據(jù)復數(shù)的特點得出b=c=0,然后得出原不等式為:a2+a<2,進而求出集合A和B,即可得出答案.
解答:解:∵兩個復數(shù)能比較大小,
說明這兩個復數(shù)都是實數(shù),
∴b=c=0
則原不等式為:a2+a<2
得:-2<a<1
即集合A={x|-2<x<1}
∵集合B={0},
∴CRB={x|x≠0}
∴A∩CRB={x|-2<x<0或0<x<1}
故選:D.
點評:本題考查交集、補集的混合運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•河西區(qū)二模)若
OA
=a
OB
=b
,則∠AOB平分線上的向量
OM
為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•河西區(qū)二模)某商場在五一促銷活動中,對5月1日9時至14時的銷售額進行統(tǒng)計,某頻率分布直方圖如圖所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售額為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•河西區(qū)二模)已知a,b,c,d成等差數(shù)列,拋物線y=x2-2x+5的頂點是(a,d),則b+c的值是
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•河西區(qū)二模)已知向量
m
=(2sin
x
2
,1),
n
=(cos
x
2
,1),設函數(shù)f(x)=
m
n
-1.
(1)求函數(shù)y=f(x)的值域;
(2)已知△ABC為銳角三角形,A為△ABC的內(nèi)角,若f(A)=
3
5
,求f(2A-
π
3
)的值.

查看答案和解析>>

同步練習冊答案