如圖∠A=90°,∠B=α,AH=h,α,h為常數(shù),AH⊥BC于H,∠AHE=∠AHD=x,問當x取何值時,△DEH的面積最大?并求出最大面積.

解:由已知∠EAH=-α,∠DAH=α,∠HEA=π-x-(-α)=+α-x,同理∠ADH=π-α-x
由正弦定理即EH=
同理可得DH=
∴S=×DH×EHsin2x=×××sin2x=×h2××sin2x
=h2×(sin2α-
當sin2x=1時,即當x取時,△DEH的面積最大為h2×(sin2α-
答:當x取時,△DEH的面積最大為h2×(sin2α-
分析:用正弦定理把,△DEH的面積用h,x,α,表示出來,再根據(jù)表達式選擇方法求最值.本題需要在兩三角形△AEH與△ADH中用正弦定理表示出EH與DH兩個邊.
點評:本題考查用三角函數(shù)的性質(zhì)求最值,考查了角的變換、正弦定理、三角形的面積公式,本題充分體現(xiàn)了三角函數(shù)解題的特點,公式多,變形靈活.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖a,直角梯形ABCD中,∠A=∠B=90°,AB=BC=
12
AD=1,E是底邊AD的中點,沿CE將△CDE折起,使A-CE-D是直二面角(如圖b).在圖b中過D作DF⊥平面BCD,EF∥平面BCD.
①求證:DF?平面CDE;
②求點F到平面ACD的距離;
③求面ACE與面ACF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖∠A=90°,∠B=α,AH=h,α,h為常數(shù),AH⊥BC于H,∠AHE=∠AHD=x,問當x取何值時,△DEH的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖∠C=90°,AC=BC,M,N分別為BC和AB的中點,沿直線MN將△BMN折起,使二面角B'-MN-B為60°,則斜線B'A與平面ABC所成角的正切值為
3
5
3
5

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第3章 三角函數(shù)與三角恒等變換):3.14 三角最值問題(解析版) 題型:解答題

如圖∠A=90°,∠B=α,AH=h,α,h為常數(shù),AH⊥BC于H,∠AHE=∠AHD=x,問當x取何值時,△DEH的面積最大?并求出最大面積.

查看答案和解析>>

同步練習冊答案